The objective of this study was to evaluate the practical limits of EPA's NONROAD 2005 to accurately simulate Central Florida conditions, especially with regard to lawn and garden equipment. In particular we investigated a NONROAD emission inventory using default inputs and then created a locally specific emission inventory. These emission inventories were prepared for Orange, Osceola, and Seminole county and focused only on the VOC and NOx emissions caused by lawn and garden equipment. The model was manipulated to assess its ability to represent this specific category of nonroad equipment for a given airshed first by running a base case scenario using default data and then by developing a locally-specific scenario through administration of a survey. The primary purpose of the survey was to evaluate local values for equipment population, equipment characteristics, activity estimates, and other relevant information. To develop these local input estimates, data were collected concerning population and usage statistics in the Central Florida area and were combined with emission factors, load factors, allocation factors, and other needed values that have been previously established by the U.S. EPA. The results of the NONROAD model were compared with the resulting emission estimates calculated from locally derived inputs, and as a result of the analysis an accurate emission estimate was calculated. In addition, several possible air quality action steps were further assessed according to feasibility, cost, and predicted emission benefit. These potential management projects were further investigated by assessing the success of other similar projects in other cities in an effort to establish specific costs and emission benefits as they relate to the tri-county area.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-4126 |
Date | 01 January 2007 |
Creators | Crum, Megan Leigh |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.0019 seconds