Return to search

Microgel-based coatings and their use as self-healing, dynamic substrates for bioapplications

Microgels are solvent swollen, cross-linked polymer macromolecules of micro or nanoscale dimensions. In this work, microgels are used as versatile building blocks in layer-by-layer assemblies to form thin coatings. While conceptually simple materials, these microgel-based films actually possess extremely complex behavior as evidenced by two particular areas. First, microgel films have self-healing properties, allowing them to rapidly recover from damage in the presence of solvent. The healing step requires rearrangement of film components, demonstrating the dynamic and mobile nature of the films. Second, fibroblasts display complex behavior on microgel films arising from the properties of the coating. A chemical crosslinking treatment of the film affects the film network structure in a concentration-dependent manner. These network changes result in altered mechanical properties that are the primary controlling factor in determining cell behavior at the interface. These data suggest that fibroblasts are not solely controlled by the film elasticity, but rather by the viscoelasticity, and there is a viscoelastic range that results in maximal cell spreading.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/53060
Date12 January 2015
CreatorsSpears, Mark William
ContributorsLyon, Andrew
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf

Page generated in 0.0016 seconds