One-dimensional nanostructures have offered unique advantages in many fields. Protein based nanotubes, in particular, are desirable for biomedical applications due to their ease of functionlization and intrinsic biocompatibility. Template-assisted methods are widely used to fabricate cylindrical nanostructures like carbon nanotubes, metal nanowires, polymer nanorods, etc. In the fabrication of protein nanostructures, the layer by layer (LbL) technique has long been applied to deposit protein multilayers on planar and spherical substrates. The success in each area led to the conclusion that the combination of these two techniques will potentially bring us the capability of fabricating protein nanotubes in a more controllable fashion. In this work, protein nanotubes have been successfully deposited inside nanoscopic pores by sequential filtration of bovine serum albumin (BSA) solution at pH 3.8 and pH 7.0 through the channels in the anodic aluminum oxide (AAO) template. The morphologies of the obtained nanostructures have been examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Also, a simple analysis from UV/Vis spectroscopy has shown that the solutions used in our experiment will not significantly damage the bioactivity of BSA. Our future work will focus on strengthening the mechanical stability of the protein nanotubes and controlling their morphology more precisely.
Identifer | oai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-1769 |
Date | 06 May 2009 |
Creators | Zhang, Dawei |
Contributors | Satya S. Shivkumar, Committee Member, Jianyu Liang, Advisor, Richard D. Sisson, Jr., Department Head |
Publisher | Digital WPI |
Source Sets | Worcester Polytechnic Institute |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses (All Theses, All Years) |
Page generated in 0.0024 seconds