In recent years rapid prototyping technology has been implemented in many spheres of industry, particularly the field of product development. Existing process provide the capability to rapidly produce a tangible solid part, directly from three dimensional CAD data, from a range of nonmetallic materials. In many situations the desired end product of a development cycle is a metallic object, whether a component or a tool. The development of a system capable of the direct manufacture of fully dense, metal parts is therefore seen as an important landmark in the evolution of rapid prototyping technology. A unique experimental project has been carried out to investigate the potential of laser surface cladding by pneumatic powder delivery to form the basis for such a process. A layered manufacturing part building strategy is proposed, in which laser cladding is used to deposit the near net shape of each layer. Conventional machining techniques are then used to trim each layer to the exact dimensions specified by the CAD data. A multi-kilowatt carbon dioxide laser was integrated with a four axis machine tool to create an opto-mechanical workstation on which to perform the process. A detailed study of the effects of cladding process parameters on the geometry of the deposited metal was carried out and quantitative relationships derived. These relationships are used to select process parameters appropriate to the geometry of the deposition required. A numerical method to fully describe the deposited clad geometry was developed in order that efficient cutter paths could be generated for the back machining cycle. These relationships are also used to determine the minimum size of deposited bead from which the required layer section may be machined, in order to optimise process efficiency. The application of the technique to the generation of a variety of simple geometries was investigated and the potential problems identified. A preliminary investigation into the process accuracy is made, relating specifically to the predictability of the geometry of multiple layer depositions and the distortion of parts as subsequent layers are deposited. The limits of geometrical complexity possible with the current apparatus, and the unsatisfactory build times involved, suggest that the most attractive application of this technique is as part of a hybrid process, adding a novel additive dimension to existing automated fabrication techniques.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:284268 |
Date | January 1995 |
Creators | Murphy, M. L. |
Publisher | University of Liverpool |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Page generated in 0.0017 seconds