Rapid prototyping systems have advanced significantly with respect to material capabilities, fabrication speed, and surface quality. However, build jobs are still manually activated one at a time. The result is non-productive machine time whenever an operator is not at hand to make a job changeover. A low-cost auxiliary system, named Continuous Layered Manufacturing (CLM), has been developed to automatically load and unload the FDM 1600 rapid prototyping system (Stratasys, Inc.). The modifications made to the FDM 1600 system are minimal. The door to the FDM 1600 build chamber is removed, and the .SML build files that are used to drive the FDM 1600 are modified at both ends to facilitate synchronized operation between the two systems. The CLM system is capable of running three consecutive build jobs without operator intervention. As long as an operator removes finished build jobs, and adds new build trays before at most every three build jobs, the FDM can operate near indefinitely. The impact of the CLM system on the productivity of the FDM 1600 rapid prototyping system is demonstrated by the expected reduction from the customary eight weeks down to a future three and one-half weeks required to complete the typical forty build jobs during a semester in the course ME 4644 Introduction to Rapid Prototyping at Virginia Tech. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/31533 |
Date | 28 March 2000 |
Creators | Brockmeier, Oivind |
Contributors | Mechanical Engineering, Bohn, Jan Helge, Sturges, Robert H., Saunders, William R. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | THESIS.pdf |
Page generated in 0.002 seconds