Return to search

Iterative joint detection and decoding of LDPC-Coded V-BLAST systems

Soft iterative detection and decoding techniques have been shown to be able to achieve near-capacity performance in multiple-antenna systems. To obtain the optimal soft information by marginalization over the entire observation space is intractable; and the current literature is unable to guide us towards the best way to obtain the suboptimal soft information. In this thesis, several existing soft-input soft-output (SISO) detectors, including minimum mean-square error-successive interference cancellation (MMSE-SIC), list sphere decoding (LSD), and Fincke-Pohst maximum-a-posteriori (FPMAP), are examined. Prior research has demonstrated that LSD and FPMAP outperform soft-equalization methods (i.e., MMSE-SIC); however, it is unclear which of the two scheme is superior in terms of performance-complexity trade-off. A comparison is conducted to resolve the matter. In addition, an improved scheme is proposed to modify LSD and FPMAP, providing error performance improvement and a reduction in computational complexity simultaneously. Although list-type detectors such as LSD and FPMAP provide outstanding error performance, issues such as the optimal initial sphere radius, optimal radius update strategy, and their highly variable computational complexity are still unresolved. A new detection scheme is proposed to address the above issues with fixed detection complexity, making the scheme suitable for practical implementation. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2008-07-08 19:29:17.66

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/1304
Date10 July 2008
CreatorsTsai, Meng-Ying (Brady)
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
Format808778 bytes, application/pdf
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0124 seconds