Return to search

Primary T cell immunodeficiencies associated with disturbed proximal T cell receptor signalling caused by human autosomal recessive LCK, ZAP-70 and ITK-mutations

T lymphocytes express either a preTCR, or a clonotyoic γδ TCR or αβ TCR together with the CD3-complex and the associated ζ-chain. TCR:CD3:ζ-signalling is crucial for T cell development and antigen-specific activation including proliferation, differentiation, effector functions and apoptosis of mature T cells. Protein tyrosine kinase (PTK) cascades lie at the heart of proximal TCR:CD3:ζ-signalling. The CSK-, SRC-, SYK- and TEC-family members C-terminal SRC kinase (CSK), lymphocyte-specific protein tyrosine kinase (LCK), ζ-chain associated protein tyrosine kinase of 70 kDa (ZAP-70) and interleukin-2-inducible T cell kinase (ITK), respectively, are the major T cell players. After TCR:CD3:ζ-complex triggering, activation of PTKs result in tyrosine phosphorylation signals. These include phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs) of the CD3 and ζ-chains, adaptor proteins that nucleate the proximal LAT:SLP-76-signalosome controlling almost all TCR:CD3:ζ-induced signalling events. These events initiate Ca2+-flux, activation of mitogen-activated protein kinases (MAPKs), activation of nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB), activation of nuclear factor of activated T cells (NFAT) and activator protein 1 (AP-1) as well as actin reorganization, cell-adhesion and motility.Througout the last five decades, the immune system has been extensively investigated in vitro and in animal models such as the murine system. Additionally, studying and taking care of human primary immunodeficiency diseases (PIDs) has been seminal for our understanding of the human immune system as animal models not always recapitulates the subtleties found in men.In my doctoral thesis I report the first case of autosomal recessive human LCK-deficiency, a novel autosomal recessive mutation leading to human ZAP-70-deficiency and a novel autosomal recessive mutation leading to human ITK-deficiency. I provide detailed clinical, immunological and biochemical analyses especially of TCR:CD3:ζ-signalling and compare my findings to the well-established Lck-/-, Zap-70-/- and Itk-/- murine models.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00914375
Date12 November 2013
CreatorsHauck, Fabian
PublisherUniversité René Descartes - Paris V
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0021 seconds