Return to search

Optimization of preclinical profiling operations in drug discovery

Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering; in conjunction with the Leaders for Manufacturing Program at MIT, 2007. / Includes bibliographical references (p. 55-56). / In early-stage drug discovery, thousands of compounds must be tested using in vitro assays to determine their exposure and safety characteristics. This data is used to guide the selection of potential drug candidates and to help chemists in optimize the properties of those compounds. At Novartis, an internal service organization called Preclinical Compound Profiling (PCP) provides these services to the company as a whole. The purpose of this internship was to help PCP make significant improvements in cycle time and cost effectiveness without reducing the quality of information provided to their customers. The project utilized a series of deterministic and stochastic models to predict the impact of multiple operational changes on cost and cycle time. The data from each model was synthesized to create a unified view allowing combinations of changes to be analyzed together. This data was evaluated in the context of the customer needs and organizational strategy to present recommendations. Changes were implemented that will reduce materials spending by $500,000 per year while simultaneously increasing capacity, reducing cycle time, and improving customer value. Additional recommendations were developed that will enable further improvements. / by John P. Heiney. / S.M. / M.B.A.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/39595
Date January 2007
CreatorsHeiney, John P. (John Patrick)
ContributorsRoy E. Welsch and Gregory J. McRae., Leaders for Manufacturing Program., Leaders for Manufacturing Program at MIT, Massachusetts Institute of Technology. Department of Chemical Engineering, Sloan School of Management
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format60 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0024 seconds