Return to search

A framework for developing, manufacturing, and sourcing trucks & equipment in a global fluid management industry

Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering; in conjunction with the Leaders for Manufacturing Program at MIT, 2009. / Includes bibliographical references (p. 48). / Selecting and executing the optimal strategy for developing new products is a non trivial task, especially for low volume, high complexity products in a highly volatile global industry such as Fluid Management. At Fluid Management Corporation (FMC), Trucks and Equipment (T&E) that are used to deliver services both onshore and offshore currently follow a single product development model: In-house design; Outsourced prototyping, testing, and manufacturing. The objective of this research work is to challenge the status quo and to provide FMC with a practical framework that helps to determine the optimal development strategy. Rather than following a single development strategy for the entire portfolio of trucks and equipment products, the new methodology recommends a development strategy at a product functionality level and product feature level. Product development strategy is defined here using three dimensions: Design strategy; Manufacturing strategy; and Supply Chain strategy. Each functionality or feature is evaluated using a set of six criteria which then maps that functionality or feature to a specific recommended location on a three dimensional strategy cube. The set of evaluation criteria were derived from exploring and analyzing the current product development process, and from benchmarking world class companies from a wide range of different industries. The results show that for functionalities and features that differentiate FMC from its competitors and are viewed as core competencies, FMC should consider in sourcing the design, prototyping, and testing processes. / (cont.) These functionalities include blending, pumping, software development, and system integration. Similarly, for functionalities and features that are not viewed as core competencies such as transport units, storage, and power generation, FMC should consider outsourcing the development process including design. / by Ghassan Awwad. / S.M. / M.B.A.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/50085
Date January 2009
CreatorsAwwad, Ghassan Samir
ContributorsCharles Fine and David Simchi-Levi., Leaders for Manufacturing Program., Leaders for Manufacturing Program at MIT, Massachusetts Institute of Technology. Department of Civil and Environmental Engineering, Sloan School of Management
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format48 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0018 seconds