Partial Least Squares is both a regression method and a tool for variable selection, that is especially appropriate for models based on numerous (possibly correlated) variables. While being a well established modeling tool in chemometrics, this thesis adapts PLS to financial data to predict the movements of the business cycle represented by the OECD Composite Leading Indicators. High-dimensional data is used, and a model with automated variable selection through a genetic algorithm is developed to forecast different economic regions with good results in out-of-sample tests. / Partial Least Squares är både en regressionsmetod och ett verktyg för variabelselektion som är specielltlämpligt för modeller baserade på en stor mängd (möjligtvis korrelerade) variabler.Medan det är en väletablerad modelleringsmetod inom kemimetri, anpassar den häruppsatsen PLS till finansiell data för att förutspå rörelserna av konjunkturen,representerad av OECD's Composite Leading Indicator. Högdimensionella dataanvänds och en model med automatiserad variabelselektion via en genetiskalgoritm utvecklas för att göra en prognos av olika ekonomiska regioner medgoda resultat i out-of-sample-tester
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-151378 |
Date | January 2014 |
Creators | Lannsjö, Fredrik |
Publisher | KTH, Matematisk statistik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-MAT-E ; 2014:58 |
Page generated in 0.002 seconds