Return to search

Tolerance to sub-zero temperatures in <i>Phaseolus acutifolius</i> and interspecies hybrids between <i>Phaseolus vulgaris</i> and <i>P. acutifolius</i>

Dry bean (Phaseolus vulgaris) is a sub-tropical crop severely affected by exposure to low temperatures during all of its growing stages. Cool spring temperatures and the risk of frost are major limiting factors for the early sowing of dry bean in Saskatchewan. Due to its economic importance; however, it has been introduced to Saskatchewan, but it needs to be made more cold tolerant to further expand acreage. The genes that can contribute some tolerance to low temperature stress in bean are not found within the primary gene pool, which limits the capability of breeders to generate a cultivar with such characteristics. Consequently studies have being done in order to find a possible source of genes that can induce tolerance to low temperature exposure. Phaseolus acutifolius is a relative of the domesticated dry bean and previous hybridizations with it have been successful. It is also known to be tolerant to abiotic stresses such as drought. For this reason the decision was taken to explore the level of resistance to low temperature stress exposure in several P. acutifolius accessions. Using whole plant freezing tests in controlled environment chambers, P. acutifolius W6 15578 was found to be more tolerant to exposure to sub-zero temperatures than were P. vulgaris genotypes. Interspecies hybrids were produced between P. vulgaris NY5-161 and W6 15578 and BC2 plants were produced using embryo rescue.
The whole plant freezing test is a destructive method that cannot be used with unique F1 and BC2 genotypes, so an alternative methodology to evaluate the hybrids was explored. An electrolyte leakage test was used and showed similar results to the whole plant freezing test with the parent plant controls. The F1 hybrids had an intermediate tolerance to low temperature stress and the further generations (BC1 and BC2) had a better level of tolerance to this kind of stress than the cultivated parent (NY5-161). This suggests that the genes that confer tolerance to low temperature exposure are being maintained through several generations of backcrossing and that these interspecies hybrids may offer a chance for the development of improved dry bean cultivars for the Saskatchewan environment.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-04262011-184754
Date30 May 2011
CreatorsMartinez, Jocepascual
ContributorsCoulman, Bruce, Gepts, Paul, Bett, Kirstin
PublisherUniversity of Saskatchewan
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-04262011-184754/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0023 seconds