The use of machine learning to predict output from data, using a model, is a well studied area. There are, however, a number of real-world applications that require a model to be produced but have little or no data available of the specific environment. These situations are prominent in Intelligent Environments (IEs). The sparsity of the data can be a result of the physical nature of the implementation, such as sensors placed into disaster recovery scenarios, or where the focus of the data acquisition is on very defined user groups, in the case of disabled individuals. Standard machine learning approaches focus on a need for training data to come from the same domain. The restrictions of the physical nature of these environments can severely reduce data acquisition making it extremely costly, or in certain situations, impossible. This impedes the ability of these approaches to model the environments. It is this problem, in the area of IEs, that this thesis is focussed. To address complex and uncertain environments, humans have learnt to use previously acquired information to reason and understand their surroundings. Knowledge from different but related domains can be used to aid the ability to learn. For example, the ability to ride a road bicycle can help when acquiring the more sophisticated skills of mountain biking. This humanistic approach to learning can be used to tackle real-world problems where a-priori labelled training data is either difficult or not possible to gain. The transferral of knowledge from a related, but differing context can allow for the reuse and repurpose of known information. In this thesis, a novel composition of methods are brought together that are broadly based on a humanist approach to learning. Two concepts, Transfer Learning (TL) and Fuzzy Logic (FL) are combined in a framework, Fuzzy Transfer Learning (FuzzyTL), to address the problem of learning tasks that have no prior direct contextual knowledge. Through the use of a FL based learning method, uncertainty that is evident in dynamic environments is represented. By combining labelled data from a contextually related source task, and little or no unlabelled data from a target task, the framework is shown to be able to accomplish predictive tasks using models learned from contextually different data. The framework incorporates an additional novel five stage online adaptation process. By adapting the underlying fuzzy structure through the use of previous labelled knowledge and new unlabelled information, an increase in predictive performance is shown. The framework outlined is applied to two differing real-world IEs to demonstrate its ability to predict in uncertain and dynamic environments. Through a series of experiments, it is shown that the framework is capable of predicting output using differing contextual data.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:585452 |
Date | January 2013 |
Creators | Shell, Jethro |
Publisher | De Montfort University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/2086/8842 |
Page generated in 0.0058 seconds