This series of experiments used the multiple learning and memory systems hypothesis of the mammalian nervous system to investigate the possibility that the amygdala, dorsal striatum, and hippocampal systems might, in certain situations, interact to produce behavior in the normal animal. Using variations of the conditioned-cue preference (CCP) task, evidence is presented showing that context-specific information acquired by the hippocampus interferes with acquisition of amygdala-based stimulus-reward learning. It was also demonstrated that there are amygdala-, dorsal striatum-, and hippocampus-based forms of place learning and that cue ambiguity and movement are important factors determining which of these learning and memory systems gain behavioral control in place learning situations. These findings provide evidence for interactions among learning and memory systems and implicate the amygdala and dorsal striatum in some types of non-hippocampal based place learning using distal cues.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.28491 |
Date | January 1994 |
Creators | McDonald, Robert James |
Contributors | White, Norman (advisor) |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Doctor of Philosophy (Department of Psychology.) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | alephsysno: 001447483, proquestno: NN00113, Theses scanned by UMI/ProQuest. |
Page generated in 0.0018 seconds