In regression with near collinear explanatory variables, the least squares predictor has large variance. Ordinary least squares regression (OLSR) often leads to unrealistic regression coefficients. Several regularized regression methods have been proposed as alternatives. Well-known are principal components regression (PCR), ridge regression (RR) and continuum regression (CR). The latter two involve a continuous metaparameter, offering additional flexibility. For a univariate response variable, CR incorporates OLSR, PLSR, and PCR as special cases, for special values of the metaparameter. CR is also closely related to RR. However, CR can in fact yield regressors that vary discontinuously with the metaparameter. Thus, the relation between CR and RR is not always one-to-one. We develop a new class of regression methods, LSRR, essentially the same as CR, but without discontinuities, and prove that any optimization principle will yield a regressor proportional to a RR, provided only that the principle implies maximizing some function of the regressor's sample correlation coefficient and its sample variance. For a multivariate response vector we demonstrate that a number of well-established regression methods are related, in that they are special cases of basically one general procedure. We try a more general method based on this procedure, with two meta-parameters. In a simulation study we compare this method to ridge regression, multivariate PLSR and repeated univariate PLSR. For most types of data studied, all methods do approximately equally well. There are cases where RR and LSRR yield larger errors than the other methods, and we conclude that one-factor methods are not adequate for situations where more than one latent variable are needed to describe the data. Among those based on latent variables, none of the methods tried is superior to the others in any obvious way.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-7025 |
Date | January 2007 |
Creators | Björkström, Anders |
Publisher | Stockholms universitet, Matematiska institutionen, Stockholm : Matematiska institutionen |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0041 seconds