In this thesis a machine vision based indoor navigation system is presented. This is achieved by using rotationally independent optimized color reference labels and a geometrical camera calibration model which determines a set of camera parameters. All reference labels carry one byte of information (0 to 255), which can be designed for different values. An algorithm in Matlab has been developed so that a machine vision system for N number of symbols can recognize the symbols at different orientations. A camera calibration model describes the mapping between the 3-D world coordinates and the 2-D image coordinates. The reconstruction system uses the direct linear transform (DLT) method with a set of control reference labels in relation to the camera calibration. The least-squares adjustment method has been developed to calculate the parameters of the machine vision system. In these experiments it has been demonstrated that the pose of the camera can be calculated, with a relatively high precision, by using the least-squares estimation.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:miun-18453 |
Date | January 2013 |
Creators | Anwar, Qaiser |
Publisher | Mittuniversitetet, Institutionen för informationsteknologi och medier |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds