Return to search

Minimax D-optimal designs for regression models with heteroscedastic errors

Minimax D-optimal designs for regression models with heteroscedastic errors are studied and constructed. These designs are robust against possible misspecification of the error variance in the model. We propose a flexible assumption for the error variance and use a minimax approach to define robust designs. As usual it is hard to find robust designs analytically, since the associated design problem is not a convex optimization problem. However, the minimax D-optimal design problem has an objective function as a difference of two convex functions. An effective algorithm is developed to compute minimax D-optimal designs under the least squares estimator and generalized least squares estimator. The algorithm can be applied to construct minimax D-optimal designs for any linear or nonlinear regression model with heteroscedastic errors. In addition, several theoretical results are obtained for the minimax D-optimal designs. / Graduate

Identiferoai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/12863
Date20 April 2021
CreatorsYzenbrandt, Kai
ContributorsZhou, Julie
Source SetsUniversity of Victoria
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsAvailable to the World Wide Web

Page generated in 0.0019 seconds