In this thesis, we first review the current development of optimal regression designs under the second-order least squares estimator in the literature. The criteria include A- and D-optimality. We then introduce a new formulation of A-optimality criterion so the result can be extended to c-optimality which has not been studied before. Following Kiefer's equivalence results, we derive the optimality conditions for A-, c- and D-optimal designs under the second-order least squares estimator. In addition, we study the number of support points for various regression models including Peleg models, trigonometric models, regular and fractional polynomial models. A generalized scale invariance property for D-optimal designs is also explored. Furthermore, we discuss one computing algorithm to find optimal designs numerically. Several interesting applications are presented and related MATLAB code are provided in the thesis. / Graduate
Identifer | oai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/9765 |
Date | 23 July 2018 |
Creators | Yeh, Chi-Kuang |
Contributors | Zhou, Julie |
Source Sets | University of Victoria |
Language | English, English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | Available to the World Wide Web |
Page generated in 0.002 seconds