Variability in the relationship between tree leaf area (TLA) and selected stem measurements was examined in three Douglas-fir stands (Pseudotsuga menziesii (Mirb.) Franco, var. menziesii) that were less than 50 years-old, spaced to approximately 550 to 650 stems/ha, and differed in soil moisture and nutrients. Attention was given to the effect of mean annual ring width (MARW), cross-sectional area of the live bark (ALB - a surrogate measure of relative nutrient storage in the stem), and cross-sectional area of the most recent annual rings equal in number to the number of whorls in the live crown (ALC), on variability in the relationship between TLA and cross-sectional area of sapwood (ASW).
At breast height, basal area, ASW, and cross-sectional area of sapwood plus live bark (ASWLB) were not linearly related to TLA, and linear regression equations using log transformed variables varied significantly between sites. Nonlinear regression equation for ASW at breast height was: TLA = 0.064ASẆ¹•³³ (I² = 0.856). Including D (the distance between breast height and the center of the live crown) in the nonlinear equation, did not significantly improve the regression.
Tree leaf area prediction models using stem measures from the base of live crown (blc) had higher adjusted R² values than models using stem measures from breast height.
At the blc, basal area, ASW, and ASWLB were linearly related to TLA (adjusted R² = 0.926, 0.908, and 0.934, respectively).
Multiplying ASW by MARW did not improve the fit of the regression models. Multiplying ASW by ALB improved the linearity of the relationship of ASW at breast height to TLA. The best fitting TLA model overall used the product of ASW at blc and ALB at blc as the independent variable (adjusted R² = 0.967).
The results indicate that research into the allometric relationship of TLA to stem measures should give consideration to more than hydraulic measures and include measures of bark function. At breast height and the blc, the independent variable ALC was linearly related to tree leaf area and had higher adjusted R² values than did ASW. In most trees the ALC stem measure was found to include a portion of heartwood area. The strong relationship between TLA and ALC suggests that a given transpiring leaf mass or area is related to a proportional amount of conducting stemwood and physical support stemwood.
A quick alternative approach for estimating individual tree leaf area using photographs taken at fixed distance and angle from the target tree did not result in a reliable tree leaf area prediction technique. The difficulty of obtaining views of the tree crown which were not obstructed by adjacent tree crowns was the major obstacle. Using a fixed distance and camera angle was a problem because of variable
tree heights. However, altering these fixed positions introduced additional variation into the tree leaf area estimation.
Mean specific leaf area (SLA) varied significantly by site, needle age class, and crown position. Mean SLA per needle age class per branch can be predicted with 95% confidence and a 10% allowable error using six 10-needle samples. / Forestry, Faculty of / Graduate
Identifer | oai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/28819 |
Date | January 1990 |
Creators | Neumann, John A. P. |
Publisher | University of British Columbia |
Source Sets | University of British Columbia |
Language | English |
Detected Language | English |
Type | Text, Thesis/Dissertation |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
Page generated in 0.0034 seconds