The development of leaf vascular patterns is a highly regulated process. The plant hormone
auxin is critical for vascular patterning: auxin canalization is proposed to cause files of cells to accumulate higher auxin levels and develop into veins. Thus, the response of cells to auxin and transport of auxin are critical to establish proper cell fate. We have characterized a mutation in the Arabidopsis thaliana gene name AUTOBAHN (ABN). abn leaves produce leaves that proliferate disorganized, overlapping veins parallel to the midvein with no differentiation of higher order veins. abn leaves show no normal aspects of the secondary auxin response though double mutant analysis suggest that ABN functions independently of previously characterized auxin response pathways. Wild type plants grown on an influx inhibitor phenocopy abn suggesting that abn is defective in carrier-mediated auxin influx. / x, 69 leaves : ill. ; 28 cm.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:ALU.w.uleth.ca/dspace#10133/258 |
Date | January 2005 |
Creators | Garrett, Jasmine Jay Tamara, University of Lethbridge. Faculty of Arts and Science |
Contributors | Schultz, Elizabeth |
Publisher | Lethbridge, Alta. : University of Lethbridge, Faculty of Arts and Science, 2005, Arts and Science, Department of Biological Sciences |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_US |
Detected Language | English |
Type | Thesis |
Relation | Thesis (University of Lethbridge. Faculty of Arts and Science) |
Page generated in 0.0018 seconds