Return to search

Lifetime impact prediction of component modifications in axial piston units by the failure likelihood assessment

In this paper, a new methodology is presented to estimate the lifetime impact of design changes, called Failure Likelihood Assessment (FLA). The discussion in this paper is on the fatigue lifetime prediction of axial piston units, especially after a design change. The demonstration object is an axial piston pump due to extreme environmental conditions and high specification demands, where the FLA is applied to a manufacturing change in an existing product and delivers an effect on the unit reliability. The resulted reliability imp rovement, if combined with typical calculation methods like Weibull analysis, delivers an increase in predicted lifetime considering the intended modification. As demonstration subje ct, a change of the manufacturing process of the cylinder block hub in an axial piston pump is used. The effect to the lifetime is predicted via the FLA-method and the results are calculated with test data and compared to theoretical results. The paper shows that the methodology delivers highly accurate results providing that the FLA is a powerful tool to analyze design changes as weil as new designs in regard to reliability and lifetime. The benefit for the user of this methodology will hence be more reliable products with optimized designs tobest fulfil customer's performance requirements.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:71266
Date26 June 2020
CreatorsBaus, Ivan, Rahmfeld, Robert, Schumacher, Andreas, Pedersen, Henrik C.
ContributorsDresdner Verein zur Förderung der Fluidtechnik e. V. Dresden
PublisherTechnische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish, German
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation10.25368/2020.8, urn:nbn:de:bsz:14-qucosa2-709188, qucosa:70918

Page generated in 0.0172 seconds