Cheng Yee Wan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 95-112). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / Table of Contents --- p.vi / List of Figures --- p.xi / List of Plates --- p.xiv / List of Tables --- p.xvi / Abbreviations --- p.xviii / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Legionella pneumophila --- p.1 / Chapter 1.1.1 --- Bacterial morphology and ultrastructure --- p.2 / Chapter 1.1.2 --- Microbial ecology and natural habitats --- p.4 / Chapter 1.1.2.1 --- Association with amoeba --- p.5 / Chapter 1.1.2.2 --- Association with biofilm --- p.5 / Chapter 1.2 --- Legionnaires' disease and clinical significance --- p.6 / Chapter 1.2.1 --- Epidemiology --- p.6 / Chapter 1.2.1.1 --- Worldwide distribution --- p.6 / Chapter 1.2.1.2 --- Local situation --- p.7 / Chapter 1.2.2 --- Clinical presentation --- p.7 / Chapter 1.2.3 --- Route of infection and pathogenesis --- p.8 / Chapter 1.2.4 --- Diagnosis --- p.10 / Chapter 1.2.4.1 --- Culture of Legionella --- p.10 / Chapter 1.2.4.2 --- Direct fluorescent antibody (DFA) staining --- p.13 / Chapter 1.2.4.3 --- Serologic tests --- p.13 / Chapter 1.2.4.4 --- Urine antigen testing --- p.14 / Chapter 1.2.4.5 --- Detection of Legionella nucleic acid --- p.15 / Chapter 1.2.5 --- Risk factors --- p.15 / Chapter 1.2.6 --- Treatment for Legionella infection --- p.16 / Chapter 1.3 --- Detection of Legionella in environment --- p.16 / Chapter 1.4 --- Disinfection methods --- p.17 / Chapter 1.4.1 --- Physical methods --- p.19 / Chapter 1.4.1.1 --- Filtration --- p.19 / Chapter 1.4.1.2 --- UV-C irradiation --- p.20 / Chapter 1.4.1.3 --- Thermal eradication (superheat-and-flush) --- p.21 / Chapter 1.4.2 --- Chemical methods --- p.21 / Chapter 1.4.2.1 --- Chlorination --- p.21 / Chapter 1.4.2.2 --- Copper-silver ionization --- p.22 / Chapter 1.4.3 --- Effect of biofilm and other factors on disinfection --- p.23 / Chapter 1.5 --- Photocatalytic oxidation (PCO) --- p.24 / Chapter 1.5.1 --- Generation of strong oxidants --- p.24 / Chapter 1.5.2 --- Disinfection mechanism(s) --- p.27 / Chapter 1.5.3 --- Major factors affecting the process --- p.28 / Chapter 2. --- Objectives --- p.30 / Chapter 3. --- Materials and Methods --- p.31 / Chapter 3.1 --- Chemicals --- p.31 / Chapter 3.2 --- Bacterial strains and culture --- p.31 / Chapter 3.3 --- Photocatalytic reactor --- p.33 / Chapter 3.4 --- PCO efficacy tests --- p.33 / Chapter 3.5 --- PCO sensitivity tests --- p.35 / Chapter 3.6 --- Optimisation of PCO conditions --- p.35 / Chapter 3.6.1 --- Optimization of TiO2 concentration --- p.36 / Chapter 3.6.2 --- Optimization of UV intensity --- p.36 / Chapter 3.6.3 --- Optimization of depth of reaction mixture --- p.36 / Chapter 3.6.4 --- Optimization of stirring rate --- p.37 / Chapter 3.6.5 --- Optimization of initial pH --- p.37 / Chapter 3.6.6 --- Optimization of treatment time and initial cell concentration --- p.37 / Chapter 3.6.7 --- Combinational optimization --- p.37 / Chapter 3.7 --- Transmission electron microscopy (TEM) --- p.38 / Chapter 3.8 --- Fatty acid profile analysis --- p.40 / Chapter 3.9 --- Total organic carbon (TOC) analysis --- p.42 / Chapter 3.10 --- UV-C irradiation --- p.44 / Chapter 3.11 --- Hyperchlorination --- p.44 / Chapter 3.12 --- Statistical analysis and replication --- p.45 / Chapter 3.13 --- Safety precautions --- p.45 / Chapter 4. --- Results --- p.46 / Chapter 4.1 --- Efficacy test --- p.46 / Chapter 4.2 --- PCO sensitivity --- p.47 / Chapter 4.3 --- Optimization of PCO conditions --- p.48 / Chapter 4.3.1 --- TiO2 concentration --- p.48 / Chapter 4.3.2 --- UV intensity --- p.48 / Chapter 4.3.3 --- Depth of reaction mixture --- p.51 / Chapter 4.3.4 --- Stirring rate --- p.56 / Chapter 4.3.5 --- Effect of initial pH --- p.56 / Chapter 4.3.6 --- Effect of treatment time and initial concentrations --- p.56 / Chapter 4.3.7 --- Combinational effects --- p.63 / Chapter 4.4 --- Transmission electron microscopy (TEM) --- p.66 / Chapter 4.4.1 --- Morphological changes induced by PCO --- p.66 / Chapter 4.4.2 --- Comparisons with changes caused by UV-C irradiation and chlorination --- p.67 / Chapter 4.5 --- Fatty acid profile analysis --- p.71 / Chapter 4.6 --- Total organic carbon (TOC) analysis --- p.73 / Chapter 4.7 --- UV-C irradiation --- p.74 / Chapter 4.8 --- Hyperchlorination --- p.74 / Chapter 5. --- Discussion --- p.76 / Chapter 5.1 --- Efficacy test --- p.76 / Chapter 5.2 --- PCO sensitivity --- p.76 / Chapter 5.3 --- Optimization of PCO conditions --- p.77 / Chapter 5.3.1 --- Effect of TiO2 concentration --- p.77 / Chapter 5.3.2 --- Effect of UV intensity --- p.78 / Chapter 5.3.3 --- Effect of depth of reaction mixture --- p.79 / Chapter 5.3.4 --- Effect of stirring rate --- p.79 / Chapter 5.3.5 --- Effect of initial pH --- p.80 / Chapter 5.3.6 --- Effect of treatment time and initial concentrations --- p.81 / Chapter 5.3.7 --- Combinational effect --- p.82 / Chapter 5.4 --- Transmission electron microscopy (TEM) --- p.83 / Chapter 5.4.1 --- Morphological changes induced by PCO --- p.83 / Chapter 5.4.2 --- Comparisons with changes caused by UV-C irradiation and chlorination --- p.85 / Chapter 5.5 --- Fatty acid profile analysis --- p.85 / Chapter 5.6 --- Total organic carbon (TOC) analysis --- p.86 / Chapter 5.7 --- Comparisons of the three disinfection methods --- p.88 / Chapter 6. --- Conclusion --- p.91 / Chapter 7. --- References --- p.95 / Chapter 8. --- Appendix --- p.113
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_325115 |
Date | January 2005 |
Contributors | Cheng, Yee Wan., Chinese University of Hong Kong Graduate School. Division of Biology. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | print, xix, 117 leaves : ill. (some col.) ; 30 cm. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0023 seconds