Return to search

Os sistemas de identificação veicular, em especial o reconhecimento automático de placas / Automatic vehicle identification systems, especially the license plate recognition

Assunto bastante abordado quando se trata de Sistemas Inteligentes de Transportes (ITS), a identificação veicular - utilizada em grande parte das aplicações de ITS deve ser entendida como um conjunto de recursos de hardware, software e telecomunicações, que interagem para atingir, do ponto de vista funcional, o objetivo de, conseguir extrair e transmitir, digitalmente, a identidade de um veículo. É feita tanto por sistemas que transmitem e recebem uma identidade digital quanto por sistemas que, instalados na infraestrutura da via, são capazes de reconhecer a placa dos veículos circulantes. Quando se trata da identificação automática por meio do reconhecimento da placa veicular, os estudos têm se concentrado sobremaneira nas tecnologias de processamento de imagens, não abordando - em sua maioria - uma visão sistêmica, necessária para compreender de maneira mais abrangente todas as variáveis que podem interferir na eficácia da identificação. Com o objetivo de contribuir para melhor entender e utilizar os sistemas de reconhecimento automático de placas veiculares, este trabalho propõe um modelo sistêmico, em camadas, para representar seus componentes. Associada a esse modelo, propõe uma classificação para os diversos tipos de falhas que podem prejudicar seu desempenho. Uma análise desenvolvida com resultados obtidos em testes realizados em campo com sistemas de identificação de placas voltados à fiscalização de veículos aponta resultados relevantes e limitações para obter correlações entre variáveis, em função dos diversos fatores que podem influenciar os resultados. Algumas entrevistas realizadas apontam os tipos de falhas que ocorrem com mais frequência durante a operação desses sistemas. Finalmente, este trabalho propõe futuros estudos e apresenta um glossário de termos, que poderá ser útil a novos pesquisadores. / The automatic vehicle identification is an important feature of Intelligent Transportation Systems (ITS) and is used in most ITS applications. The identification process is comprised of a group of interacting resources that involves hardware, software and telecommunication to, digitally, extract and transmit the identity of vehicles. At least two technologies may be used in the vehicle identification process: on-board devices transmitting a digital identity or systems installed on the road infrastructure, which identify and read the vehicle license plate. As far as vehicle license plate recognition is concerned, studies have been greatly focused on image processing technologies and have not addressed the problem in a systemic approach, which is very important for understanding all variables that can interfere with the effectiveness of identification. Having this approach in mind and intending to contribute for a better performance, this paper proposes a layer model representation of those systems as well as a failure type classification associated with it. An analysis, based on a significant set of results obtained from field tests of systems with plate recognition capabilities for law enforcement, shows important results as well as limitations to obtain mathematical correlation of variables. Interviews conducted with supply actors of such systems in Brazil point out the most significant sources of failures that occur during operation. Finally, the text presents potential topics for research and organizes a glossary of terms that may be useful to future researchers.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-11052016-162646
Date19 June 2015
CreatorsEly Bernardi
ContributorsClaudio Luiz Marte, Paulo Cezar Martins Ribeiro, Leopoldo Rideki Yoshioka
PublisherUniversidade de São Paulo, Engenharia de Transportes, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.003 seconds