Thesis advisor: Charles S. Hoffman / Glucose detection in yeast occurs via a cAMP signaling pathway that is similar to that of other signaling pathways in humans. The presence of glucose in the environment ultimately represses, as a result of cAMP signaling, the transcription of the gene fbp1. Adenylate cyclase is known to convert ATP to cAMP, and is thus a central protein in the propagation of the signal. Mutant forms of the adenylate cyclase gene (git2) have been found by the inability for the organism to repress fbp1 transcription in the presence of glucose. In this study, two questions were under investigation. The first was focused on the ability of the mutations to affect the dimerization of the catalytic domain. The second investigated multiple protein-protein interactions in the leucine rich-repeat (LRR) domain of adenylate cyclase. Both domains contain mutations that confer an activation defect, and they are thus are thought to have a relationship. / Thesis (BS) — Boston College, 2005. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Biology. / Discipline: College Honors Program.
Identifer | oai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_102139 |
Date | January 2005 |
Creators | Baum, Kristen Michelle |
Publisher | Boston College |
Source Sets | Boston College |
Language | English |
Detected Language | English |
Type | Text, thesis |
Format | electronic, application/pdf |
Rights | Copyright is held by the author, with all rights reserved, unless otherwise noted. |
Page generated in 0.0018 seconds