A finite element (FE) based level set method is proposed for structural topology optimization problems in this thesis. The level set method has become a popular tool for structural topology optimization in recent years because of its ability to describe smooth structure boundaries and handle topological changes. There are commonly two stages in the optimization process: the stress analysis stage and the boundary evolution stage. The first stage is usually performed with the finite element method (FEM) while the second is often realized by solving the level set equation with the finite difference method (FDM). The first motivation for developing the proposed method is the desire to unify the techniques of both stages within a uniform framework. In addition, there are many problems involving irregular design domains in practice, the FEM is more powerful than the FDM in dealing with these problems. This is the second motivation for this study. / Numerical examples are involved in this thesis to illustrate the reliability of the proposed method. Problems on both regular and irregular design domains are considered and different meshes are tested and compared. / Solving the level set equation with the standard Galerkin FEM might produce unstable results because of the hyperbolic characteristic of this equation. Therefore, the streamline diffusion finite element method (SDFEM), a stabilized method, is employed to solve the level set equation. In addition to the advantage of simplicity, this method generates a system of equations with a constant, symmetric, and positive defined coefficient matrix. Furthermore, this matrix can be diagonalized by virtue of the lumping technique in structural dynamics. This makes the cost in solving and storing quite low. It is more important that the lumped coefficient matrix may help to improve the stability under some circumstance. / The accuracy of the finite element based level set method (FELSM) is compared with that of the finite difference based level set method (FDLSM). The FELSM is a first-order accurate algorithm but we prove that its accuracy is enough for structural optimization problems considered in this study. Even higher-order accurate FDLSM schemes are used, the numerical results are still the same as those obtained by FELSM. It is also shown that if the Courant-Friedreichs-Lewy (CFL) number is large, the FELSM is more robust and accurate than FDLSM. / The reinitialization equation is also solved with the SDFEM and an extra diffusion term is added to improve the stability near the boundary. We propose a criterion to select the factor of the diffusion term. Due to numerical errors and the diffusion term, boundary will drift during the process of reinitialization. To constrain the boundary from moving, a Dirichlet boundary condition is enforced. Within the framework of FEM, this enforcement can be conveniently preformed with the Lagrangian multiplier method or the penalty method. / Velocity extension is discussed in this thesis. A natural extension method and a partial differential equation (PDE)-based extension method are introduced. Some related topics, such as the "ersatz" material approach and the recovery of stresses, are discussed as well. / Xing, Xianghua. / Adviser: Michael Yu Wang. / Source: Dissertation Abstracts International, Volume: 71-01, Section: B, page: 0628. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 102-113). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese.
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_344390 |
Date | January 2009 |
Contributors | Xing, Xianghua., Chinese University of Hong Kong Graduate School. Division of Automation and Computer-Aided Engineering. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, theses |
Format | electronic resource, microform, microfiche, 1 online resource (xiii, 113 leaves : ill.) |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0027 seconds