Return to search

Magnetic levitation and rotation for the feasibility of free-form machining

This thesis presents a new transformative manufacturing methodology for free-form machining. An experimental prototype machine is constructed to levitate and rotate an object attached with sharp edges, which act as a cutter for the purpose of performing machining processes. This device aims to lead to a technological breakthrough, overcoming the limitation of the workpiece features, and achieve greater free-form machining capability. The construction of curved holes and interior surfaces are constrained by the geometry of the machine tool. The proposed concept creates a new device that uses a magnetic field generator as a base. It is loaded with a constant power imposing a vertical physical force to balance gravity and stabilize the cutting tool. With the uniqueness of a preferred orientation between the tool and the base, a rotating surface placed below the base permits the rotation of the cutting tool in order to achieve desired tool rotation speed. A smooth and controlled cut is achieved on a soft material. The result shows the feasibility of the device to achieve similar outcomes as a machine tool.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/52269
Date27 August 2014
CreatorsShih, Alexander H.
ContributorsLiang, Steven Y.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0082 seconds