Return to search

Understanding the Mechanical and Electrochemical Impacts of Binder Systems on Silicon Anodes in Lithium-Ion Batteries

Silicon has emerged as a promising alternative to traditional graphite as an anode material in battery technology, primarily due to its high theoretical capacity and abundance. However, its application is hindered by significant challenges, including severe volume expansion in the active material (~275%) during cycling, which can lead to a series of electrode failure issues. Polymer binder plays an essential role in addressing these challenges as it accommodates silicon's volume expansion and the rearrangement of particles. This work conducted an analysis of how different binders influence mechanical and electrochemical properties of silicon electrodes. Our findings are supported by a series of experiments, aimed at addressing the challenge of silicon volume expansion and improving the durability and efficiency of silicon-based anodes. Water-soluble polyacrylic acid (PAA) has emerged as a promising binder material for silicon anodes, with lithium hydroxide (LiOH) frequently added to improve the rheological properties of the slurry. However, literature presents varying results regarding the electrochemical performance of batteries incorporating LiOH in PAA binders. In addressing these discrepancies, our research investigates the role of LiOH in PAA, defining its impact through two primary factors: lithium-ion concentration and pH level. Our analysis involved conducting cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests, which confirmed our hypothesis that the addition of Li+ ions improves ion transport. Regarding pH, an optimal middle-ground pH level is identified, balancing the advantages shown at both lower and higher pH ranges. Despite the observed benefits of water-soluble PAA binder, such binders frequently result in uneven carbon distribution in coating, attributed to the poor wettability of nano-carbon in water. Consequently, the next portion of this work revisits the use of a traditional NMP (N-Methyl-2-pyrrolidone) soluble binder, PVDF (polyvinylidene fluoride), known for its widespread application in battery technology. However, PVDF-based silicon anodes often exhibit poor cycling performance. To address this issue and enhance the binder's flexibility, we attempted to chemically modify PVDF by incorporating carboxylic acid (-COOH) groups and reducing the polymer chain length. Despite these efforts, the experimental results did not show an improvement in cycling performance. The findings suggest that the deteriorated performance may be due to a weakened adhesion to the current collector for short-chain polymers. We then explore additional binder systems in an attempt to improve Si electrode performance. Our previous research suggests a trade-off between flexibility and adhesion in shortened polymers. To further verify this, we investigate the effect of two commercially available short-chain polymer binders, namely Jeffamine D-2000 and PAA(2000). Next, in order to mitigate the adverse effects of short polymer chain lengths on mechanical performance, we adopt an adhesion layer between the bulk electrode layer and the current collector. Finally, we evaluate several binders known for their promising results in other battery systems, including polyacrylonitrile (PAN), polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP), and polyimide (PI). A series of mechanical and electrochemical characteristics of the as-mentioned binders are investigated. The findings confirm that shorter polymer chain length leads to a weaker adhesion between the electrode coating and the current collector. Additionally, we discovered that introducing an adhesion layer can enhance the cycling stability of silicon anodes.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-11458
Date20 June 2024
CreatorsSun, Fei
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttps://lib.byu.edu/about/copyright/

Page generated in 0.0018 seconds