Return to search

Conjuntos de controle em orbitas adjuntas e compactificações ordenadas de semigrupos / Control sets on orbits and ordered compactification of semigroups

Orientadores: Luiz Antonio Barrera San Martin, Osvaldo Germano do Rocio / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-08T09:10:31Z (GMT). No. of bitstreams: 1
Verdi_MarcosAndre_D.pdf: 586732 bytes, checksum: c0182ba0a69107acd3d5548e682641df (MD5)
Previous issue date: 2007 / Resumo:Neste trabalho estudamos dois problemas distintos: ações de semigrupos em órbitas adjuntas e compactificações de semigrupos. Quanto ao estudo das ações de semigrupos, consideramos um grupo de Lie semi-simples, não compacto, conexo e com centro finito G e a órbita adjunta de G através de elementos H pertencentes a uma subalgebra abeliana maximal contida na parte não-compacta de uma decomposição de Cartan de G. Tomamos então um semigrupo S Ì G com pontos interiores e descrevemos os conjuntos de controle para a ação de S nestas órbitas. Mostramos também que esses conjuntos não são comparáveis utilizando a relação de ordem usual para conjuntos de controle e descrevemos seus domínios de atração. Consideramos também o caso em que S é um semigrupo maximal, obtendo uma descrição melhor dos conjuntos de controle. Para compactificações de semigrupos, adotamos as mesmas hipóteses sobre G e tomamos S como o semigrupo de compressão de um subconjunto fechado da variedade ??ag?maximal de G. Obtemos uma compactificação do espaço homogêneo G/H, onde H denota o grupo das unidades de S, como um subconjunto dos conjuntos fechados de G e mostramos que quando G tem posto 1 é possível realizar a imagem de S/H por essa compactificações no conjunto dos subconjuntos fechados da variedade flag maximal de G / Abstract: In this work we study two distinct problems: semigroup actions on adjoint orbits and compactication of semigroups. For the study of the semigroup actions, we consider a semi-simple connected noncompact Lie group G and the adjoint orbit through elements in a maximal abelian subalgebra contained in the complement of a maximal compactly embedded subalgebra of the Lie algebra of G. We take then a semigroup S Ì G with interior points and describe the control sets for the S-action on these orbits. It is proved here that these control sets are no comparable and we describe its domains of attraction. We also consider the case in that S is a maximal semigroup and obtain a better description of the control sets. For the compactication of semigroups, we use the same hypothesis about G and consider S as the compression semigroup of a closed subset in the maximal ag manifold of G. We obtain a compactication of the homogeneous space G/H, where H=S ÇS-1, as a subset of the set of closed sets of G and we show that when G has rank one is possible to realize the image of S/H under this compacti?cation in the set of the closed subsets of the maximal ag manifold / Doutorado / Doutor em Matemática

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/305833
Date03 June 2007
CreatorsVerdi, Marcos Andre
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Rocio, Osvaldo Germano do, San Martin, Luiz Antonio Barrera, 1955-, Salvai, Marcos, Barros, Carlos José Braga, Firer, Marcelo, Catuogno, Pedro Jose
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Format76p. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds