Among efforts to develop sustainable approaches towards the intensive rearing of finfish within open marine waters, is the development of integrated aquaculture techniques. Integrated Multi-Trophic Aquaculture (IMTA), has been promoted as a way to reduce unwanted environmental impacts associated with the intensive production of marine finfish within net-pens. The principle aim of this concept, is the bioremediation of nutrient discharges from fish aquaculture. This is to be achieved by integrating fish cultivation with the growing of species from lower trophic levels, which use the nutrient discharges as a food source. Many studies have been performed that investigate the ability of various species of macroalgae to remove dissolved nutrient discharges, and the ability bivalves to remove solid-bound nutrients, presented as either fish faeces, or an enhanced production of phytoplankton that may be promoted by nutrients emitted by fish-farms. IMTA has also been suggested as a means to improve overall productivity per unit of feed applied to fish, through the conversion of nutrient emissions into additional biomass, such as the tissues of macroalgae or bivalves. Within the research community which focuses upon the environmental impacts of aquaculture, there is a growing awareness that sustainable solutions to aquaculture production cannot be realised through a focus restricted to the growing-phase, and to a limited set of environmental impacts which may this activity may produce. This is because changes to a specific production phase often promote changes at phases located elsewhere along a products value chain. Life-Cycle Assessment (LCA), is a method employed for modelling the environmental impacts that may potentially be generated across the value chain of a product. It is particularly useful for identifying instances of environmental impact shifting; a term used to describe situations where efforts to reduce the contribution of a specific production phase towards one or more environmental impacts, has the effect of either displacing this contribution to another phase, or increases the contribution of production towards different environmental impacts. Despite its apparent suitability, LCA has not previously been fully applied to the environmental impact modelling of open-water IMTA systems. The work presented in the following thesis advances this research front, by using LCA to explore the potential for environmental problem shifting occurring as a consequence of replacing intensive monoculture production, with IMTA. Comprehensive datasets have been acquired from the Chilean aquaculture industry, describing the production of aquafeed and Salmo salar, as well as for the production of the Phaeophytic macroalga, Macrocystis pyrifera, and the molluscan bivalve, Mytilus chilensis. Using LCA methodology, the production of salmon feed, and the production of S.salar, M.pyrifera and M.chilensis, have been assessed for their capacity to contribute towards a variety of global-scale, environmental impacts. IMTA consisting of either S.salar and M.pyrifera, S.salar and M.chilensis, or all three of these species, and combined at ratios required for a bioremediation efficiency of 100 %, 50%, or 20 % of either nitrogen or phosphorous emission from fish, is compared to the monoculture production of S.salar. The comparison is based upon a standardised functional unit, with each species produced through IMTA, being modelled as part of the reference flow required to fulfil the functional unit. Monoculture is compared to IMTA upon the basis of nutritional function, by using a functional unit of mass-adjusted protein content, and mass-adjusted economic value. The use of economic value is based upon the ‘best-case’ assumption, that it serves as a proxy for the total nutritional function that each product offers to human society. The LCAs presented in this study have produced a number of results. Salmon ingredients derived from agricultural crops and animals account for the majority (between 71 % to 98 %) of contributions towards the impacts of compound salmon feed. In general, agricultural crops ingredients contribute more to these impacts than do agricultural animal ingredients, and account for between 31 % and 87 % of the contributions from all ingredients and inputs. In contrast, the combined supply of fish meal and fish oil from capture fisheries is responsible for between 0.13 % and 11 % of all impacts. Vegetable oil accounts for the vast majority of contributions from ingredients derived from agricultural crops. Vegetable oil is modelled as a 50 : 50 blend of sunflower oil and rapeseed, oil, but sunflower oil accounts not only for most of the contributions from vegetable oil, it is responsible for over 50 % of the contributions that all agricultural crop based ingredients contributes towards some impact categories. Replacing sunflower oil with rapeseed oil reduces the contributions of salmon feed by between 6 % and 24 % across 10 out of the 11 impact categories. When compared upon the basis of equal weight, the contributions of fish oil are between 18 % and 99 % lower than those from rapeseed oil. The production of feed is responsible for the majority of contributions (between 32 % and 86 % ) to all impacts of salmon grow-out production. The production of salmon-smolts accounts for between 3 % and 18 %. The majority (64 %) of contributions towards the eutrophication potential of salmon production are from nutrient emissions, which are the result of fish metabolism, whilst nutrients released through the production of feed, the majority of these being from the agricultural production of crop and animals, account for 32 %. Feed production is also a major contributor to the impacts of land-based smolt production, but these contributions (between 12 % and 37 % across all impact categories) are of a lower magnitude than those from the supply of feed to the grow-out phase. Inputs of salt, and inputs of both electricity produced in a diesel power generator and obtained from the national electricity network, are also notable contributors (between 5 % and 67 %, 4 % and 29 %, and 2 % 47 %, respectively) towards the impacts of smolt-production. The main contributors towards the potential impacts of kelp grow-out production (excluding eutrophication potential) are the supply of infrastructure (between 14 % and 89 %), operation of a diesel-powered motorboat for maintenance purposes (between 1 % and 89 %), and the supply ‘of seeded cartridges’ (between 9 and 49 %). The major contributors from the production of ‘seeded cartriges’ in a land-based facility are the supply of electricity from the national electricity network, the supply of fresh water, and the treatment of waste water. The impact potentials of producing seed in this facility might be reduced if the scale of operation is increased. Removal of nitrogen and phosphorous upon the harvesting of kelp is calculated based upon kelp tissue contents of these nutrients. The harvesting of 200 tonnes ha / yr-1, results in a eutrophic potential with a negative value (-376.51 kg of phosphate equivalents). The removal of such a quantity of nutrients might be beneficial if the local marine environment is at risk of hypernutrification, but when no such problem is present, the potential for undesirable consequences of nutrient sequestration should be considered. The major contributor towards the impacts of mussels is the provision of infrastructure (between 25 % and 99.5 %, excluding eutrophication potential). Infrastructure is also responsible for the majority of contributions from mussel seed production. The provision of cotton mesh bags, which are used to aid attatchment of seed to drop-ropes in the grow-out phase, account for between 37% and 99 % of the contributions from the infrastructure from the grow-out phase. This result suggest that either the impacts of mussel production can be reduced by using an alternative material with lower environmental impact potentials, or the inventory data describing the producing of cottonmesh bags requires some improvement. The outcomes of the LCAs of the different IMTA scenarios, are interesting. The results show that choice of species, and the ratios of their combination as required for the different efficiencies of bioremediation, can have a significant effect upon the comparison between IMTA and monoculture. / The study demonstrates a potential for environmental problem shifting as being a consequence of IMTA, especially when the functional unit is mass-adjusted economic value. As bioremediation efficiency increases, contributions towards eutrophication decrease. However, this reduction is achieved at the cost of increasing the contributions of IMTA towards those impact categories, such as ‘ozone layer depletion,’ for which it has a greater contribution than does monoculture. In general, it cannot be concluded from these results that open-water IMTA represents a more sustainable alternative to the monoculture production of Atlantic salmon. The sustainability of IMTA is shown to be dependent upon a variety of trade-offs, between individual environmental impacts, and between these impacts and the nutritional function that the system is capable of providing.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:759406 |
Date | January 2017 |
Creators | Prescott, Steven George |
Contributors | Telfer, Trevor ; Little, David |
Publisher | University of Stirling |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1893/28269 |
Page generated in 0.0028 seconds