Solar photovoltaic (PV) generation has been gaining popularity as low carbon energy technology in the face of the global climate change. However, conventional utility-scale PV requires large swaths of land to be occupied for decades which prevents the land from producing food or performing vital ecosystem services. Co-location of PV with crop cultivation is an emerging strategy for mitigating the land use of PV. In order to optimize this strategy, the impact of the plant growth-related soil properties need to be quantified. To this end, the first portion of the thesis investigated the impacts on the soil properties in a re-vegetated solar PV facility in Boulder, Colorado, which was the oldest vegetation-PV co-location site in the world. The second portion of the thesis uses a life cycle analysis (LCA) approach to test the feasibility of co-location of model crop cultivation and solar PV electricity generation in rural Indonesia, and it is the first study to use the LCA study of the co-located solar in the tropics. The first approach revealed that the soil hydrology, grain size distribution, and total carbon and nitrogen are significantly altered from their original state by the construction and presence of photovoltaic arrays, and that those properties had not been restored to their pre-construction levels despite the fact that ten years had passed since re-vegetation of the PV array. The persistence of the altered soil properties meant that the designs regarding re-vegetation or co-location of PV with crops would have to be considered at the beginning of the construction of the PV to minimize the impact on the soil and the existing vegetation. Furthermore, soil moisture was the highest in the soil underneath the western edge of the PV panels, where the western tilt of the PV panel had concentrated the rainfall. The heterogeneity in soil hydrology created by the panels could be manipulated to benefit the growth of vegetation within the PV array. The LCA approach revealed that a hectare of PV arrays with full module density would carbon offsets against diesel electricity generation and the grid, and that the annual supply of electricity from the PV could satisfy the demand of a typical rural Indonesian village several times over. However, the high capital expenditure of solar mean that co-location with full PV module density would not be economically feasible, even with the income stream from the co-located crop cultivation. In order to reduce the capital expenditure, the PV module density for co-location was reduced to half. The combination of reduced capital expenditure and the income stream from the crop made the co-located land use significantly less costly. Additionally, the rural electrification would be able to provide secondary socioeconomic benefits such as avoidance of health costs through operation of public health infrastructures, increased standard of living, and secondary income opportunities from processing of raw materials. However, better subsidies for renewables, specialized loan structures for small-scale renewable systems, and a culture of co-operation between small landholders would need to be implemented before the co-located system becomes affordable to the inhabitants in rural Indonesian villages. / Geology
Identifer | oai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/2695 |
Date | January 2019 |
Creators | Choi, Chong Seok Seok |
Contributors | Ravi, Sujith, Davatzes, Nicholas, Nyquist, Jonathan |
Publisher | Temple University. Libraries |
Source Sets | Temple University |
Language | English |
Detected Language | English |
Type | Thesis/Dissertation, Text |
Format | 135 pages |
Rights | IN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/ |
Relation | http://dx.doi.org/10.34944/dspace/2677, Theses and Dissertations |
Page generated in 0.0133 seconds