Return to search

Life Cycle Assessment of Wastewater Treatment Systems

Over recent decades, environmental regulations on wastewater treatment plants (WWTP) have trended towards increasingly stringent nutrient removal requirements for the protection of local waterways. However, such regulations ignore the other environmental impacts that might accompany the apparent improvements to the WWTP. This PhD thesis used Life Cycle Assessment (LCA) to quantify these environmental trade-offs, and so better inform policy makers on the wider benefits and burdens associated with wastewater treatment. A particular focus was also given to the generation of methane and nitrous oxide in wastewater systems, since the quantification of greenhouse gas (GHG) emissions from WWTPs is presently a substantial area of uncertainty. Rapid changes to the GHG regulatory landscape mean that this level of uncertainty, now represents an unacceptable business risk for many water utilities. Specifically, there were three research objectives of this thesis: Research Objective No.1 – Environmental optimisation of wastewater treatment systems – For typical receiving environments, the optimum wastewater treatment system configuration is not necessarily at the limit of best practice for nutrient removal. The LCA approach to this research objective was divided into two stages. In stage I, a comprehensive desk-top life cycle inventory of ten different wastewater treatment scenarios was completed. The scenarios covered six process configurations and treatment standards ranging from raw sewage to advanced nutrient removal. It was shown that physical infrastructure, chemical usage and operational energy all increased with the level of nutrient removal. These trends represented a trade-off of negative environmental impacts against improved local receiving water quality. In stage II of the LCA, a quantitative life cycle impact assessment of the ten scenarios, referenced against Australian normalisation data, was completed. From a normalised perspective against Australian society, the contribution of WWTPs to headline issues such as global warming and energy consumption was found to be very small. The more prominent environmental impact categories were eutrophication due to nutrient discharge and toxicity issues, due to heavy metals in biosolids. There existed a broader environmental trade-off for nutrient removal, that could only be justified by society and regulators implicitly placing higher value on local water quality, than on other global environmental pressures. In light of this quantitative LCA, regulatory agencies should consider the broader environmental consequences of their policies such as the Queensland Water Quality Guidelines. It is suggested that the scope of WWTP licensing considerations should be widened from a singular focus on water quality objectives, to a more comprehensive LCA-based approach. Research Objective No. 2 – Quantification of nitrous oxide emissions from biological nutrient removal (BNR) wastewater treatment plants – Current GHG assessment methods for wastewater treatment plants are grossly inaccurate because of significant unaccounted N2O emissions. The research for objectives two and three was funded by the Water Services Association of Australia (WSAA), which is the peak body of the Australian urban water industry. Thus, whilst the earlier LCA results suggested that GHG emissions from WWTPs were insignificant from a national perspective, the industry is actually very engaged on this issue from an environmental responsibility and business risk perspective. This PhD study adopted a rigorous mass balance approach to determine N2O-N generation at seven full-scale WWTPs. The results varied considerably in the range 0.006 – 0.253 kgN2O-N generated per kgNdenitrified (average: 0.035 +/- 0.027). These results were generally larger than the current default value assumed in the National Greenhouse and Energy Reporting (Measurement) Technical Guidelines (i.e. 0.01 kg N2O-N.kgN-1denitrified). High N2O-N generation was shown to correspond with elevated bulk NO2--N concentrations in the bioreactor. The results also suggested that WWTPs designed for low effluent TN have lower and less variable N2O generation than plants that only achieve partial denitrification. Research Objective No.3 – Quantification of methane emissions from low-strength wastewater collection systems – Current default GHG assessment methods for sewerage systems are grossly inaccurate because of significant unaccounted CH4 emissions from rising mains. Presently, international GHG guidelines state that “wastewater in closed underground sewers is not believed to be a significant source of methane” (IPCC, 2006). However, the results of this PhD research demonstrated that methane generation in rising main sewers is substantial. It was shown that dissolved methane concentrations were dependent upon pipeline geometry and sewage residence time. Consequently, it was possible to develop a simple, yet robust, theoretical model that predicted methane generation from these two independent parameters. This model provides a practical means for water authorities globally to make an estimate of the currently unaccounted methane emissions from pressurised sewerage systems.

Identiferoai:union.ndltd.org:ADTP/286077
CreatorsJeffrey Foley
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish

Page generated in 0.0015 seconds