Return to search

Life Cycle Assessment (LCA) technique as a holistic tool for environmental impact and economic analysis of a co-pulping process

As the pressure on the chemical and process industries to improve environmental and economic performance increases, the need to move away from narrow system definitions and concepts in environmental system management is becoming more apparent. Life Cycle Assessment (LCA) has been a gaining wider acceptance as a holistic tool that enables quantification of environmental interventions and evaluation of the improvement options throughout the life cycle of process, product or activity. The stringent environmental legislation, especially in developing countries has warranted the need for intensive research in this field. Moreover, the capital cost for mitigation of emissions have put enormous pressure on the industries to reduce the overall process economic performance. This has not exempted the Pulp and Paper industry, being the producers of highly variable emissions quality and quantity are the prime candidates for the application of the technique. The application of the LCA in process selection has been necessitated by the fact that sometimes a technology intended to reduce wastes has created unanticipated impacts in other media and/or stages of the life cycle. Thus, LCA has been developed as a means to identify and deal with these impacts before they can occur. It differs from other pollution prevention techniques in that it views all the resource and energy inputs to a product (Life Cycle Inventory), as well as the associated wastes, health and ecological burdens (Impact Assessment), and evaluates opportunities to reduce environmental impacts (Improvement Analysis) from cradle to grave. LCA is often confused with other assessment tools, such as life cycle cost (LCC) or sometimes referred to as "environmental life cycle costing." This study was conducted at Mondi Packaging South African-Piet Retief Mill, a producer of linerboard, since this site has ample opportunity to minimse the environmental burden presented by operation of both Copeland Reactor and Boilers with significant emissions of SOx and NOx, and water effluent. The current mill strategy that is based on tight procurement specification of raw material is unsustainable. The environmental and economic performance analysis for this study followed from a mass balance of the pulp plant, power station, and paper machine as well as black liquor incinerating plant, and it was found that the most significant emissions come from pulp and steam generating processes. These emissions can be reduced by improving the mill energy efficiency and optimizing the Copeland scrubber absorption efficiency. The optimization of the Copeland scrubbing system will surely lead to improved environmental performance, however, the furnace stacks have to be modified to include the scrubbing system for absorption of SOx and NOx. / Dissertation (MEng (Chemical Engineering))--University of Pretoria, 2008. / Chemical Engineering / unrestricted

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:up/oai:repository.up.ac.za:2263/28144
Date23 September 2008
CreatorsMokebe, Kozana David
ContributorsProf T Majozi, dmokebe@mpsa.co.za
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeDissertation
Rights© University of Pretoria 2007E1076/

Page generated in 0.0091 seconds