A fundamental aerodynamic analysis technique for a single straight fixed wing has been expounded upon and turned into a modern technique that can analyze multiple wings of more realistic shapes common on aircraft. This modern technique is extended further to apply towards propellers. A method to overcome propeller analysis problems at low airspeeds is presented. This method is compared to more traditional propeller analysis techniques.
Identifer | oai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-8100 |
Date | 01 May 2018 |
Creators | Montgomery, Zachary S. |
Publisher | DigitalCommons@USU |
Source Sets | Utah State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Graduate Theses and Dissertations |
Rights | Copyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu. |
Page generated in 0.0017 seconds