Return to search

Infrared spectroscopic studies : from small molecules to large

Infrared light (IR) was first discovered by Friedrich Wilhelm Herschel in 1800. However, until 1940’s, molecular IR studies involved only water and small organic molecules, because of the long measurement times. Development Fourier transform infrared spectroscopy (FTIR) has minimized the time required to obtain data, making it possible to investigate bigger biological systems, e.g. proteins and nucleic acids.This thesis concentrates on the applications of different IR spectroscopic techniques to a variety of biological systems and development of new approaches to study complicated biological events. The first paper in this work concerns using so-called caged compounds to study the aggregation of Alzheimer’s Aβ-peptide which is linked to the formation of neurotoxic fibrils in the brain. By adding caged-sulfate to the Aβ samples we were able to change the pH of the sample, while recording IR data and study fibril formation in a time-resolved manner. Then we used caged–ADP to study the production of ATP and creatine, mediated by creatine kinase (CK). Using CK as a helper enzyme we studied the effects of the phosphate binding on the secondary structure of SR Ca2+ATPse and determined the structural differences between two similar states Ca2E1ADP and Ca2E1ATP. In the second part of the thesis we used ATR-FTIR spectroscopy and a specially designed dialysis setup, to develop a general method to detect ligand binding events by observing the IR absorbance changes in the water hydration shell around the molecules. The same method was used to determine the binding of DNA to the transcription factors of the E2F family. E2F proteins play main part in the gene regulatory networks that control cell development. However how they recognize their DNA-binding sites and the mechanism of binding is not well understood. By using ATR-FTIR, we observed the changes in the secondary structure of the proteins, as well as the distortions to the DNA upon E2F-DNA complex formation. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-101077
Date January 2014
CreatorsEremina, Nadejda
PublisherStockholms universitet, Institutionen för biokemi och biofysik, Stockholm : Department of Biochemistry and Biophysics, Stockholm University
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds