Return to search

Investigation of Bridgehead Atom Manipulation in Traditionally Boron-Centered Tripodal Ligands

Since Swiatoslaw Trofimenko first reported their synthesis in 1966, poly(pyrazolyl)borate ligands, [R”ₓB(pz,ᴿ⋅ᴿ’)₄₋ₓ], have found widespread utility in modern coordination chemistry, undoubtedly as a consequence of the numerous facets of the ligand scaffold that can be readily altered. Relative to the extensive efforts directed towards the incorporation of pyrazolyl moieties with different substituents and towards the installation of groups other than hydrogen on the bridgehead boron, comparatively few attempts have been dedicated to elucidating synthetic approaches to altering the identity of the bridgehead atom itself. Such manipulations have the potential to generate new compounds that exhibit both structural and electronic properties previously unobserved or inaccessible for the parent boron compound, and the research summarized herein is motivated both by the paucity of these derivatives and by this potential.

Chapter 1 explores the use of aluminum and gallium as linker atoms to afford heavier congeners of traditional poly(azolyl)borates. This study has utilized LiEH₄ (E = Al, Ga) in place of LiBH₄, and significantly has afforded the first structurally characterized examples of tris(pyrazolyl)hydrogallates and of tris(pyrazolyl)methylgallates featuring substituted pyrazolyl groups. Moreover, the structures of {[R”ETpᴿ⋅ᴿ’]Li}₂ (E = Al, Ga) have been found to vary as a consequence of the identity of both the pyrazolyl substituents (R, R’) and the substituent on the linker atom (R”), and in some instances differ significantly from the structures of the corresponding boron derivatives. Additionally, the reactions of LiEH4 with tert-butylmercaptoimidazole, HmimBut, have afforded the first examples of tris(mercaptoimidazolyl) ligands to feature aluminum and gallium bridgeheads. The molecular structures of these derivatives similarly display interesting coordination modes which, in some cases, contrast greatly to those of the parent boron ligands.

In Chapter 2, synthetic approaches for the preparation of novel dianionic tris(pyrazolyl) ligands, obtained via the use of magnesium and zinc as linker atoms, are summarized. Interestingly, the otherwise neutral {[MeMTpᴹᵉ²][Li₂]} fragment is found to associate with an additional Lipzᴹᵉ² molecule, thereby affording a series of [MeMTpᴹᵉ²][Li3(pzᴹᵉ²)Ln] compounds in which each lithium is coordinated to two pyrazolyl nitrogen atoms. Both chloride and iodide anions can also serve as capping ligands for the {[MeMTpᴹᵉ²][Li₃]}+ moieties, suggesting that the trilithio scaffold can be viewed as a trifold receptor for anions. Additionally, the tetrakis(pyrazolyl) derivatives, [(THF)2Li{μ-[M(pzᴹᵉ²)₄]}Li(THF)₂], have also been prepared and structurally characterized.

Chapter 3 details the preparation, characterization, and reactivity of symmetric homodinuclear magnesium and zinc complexes, [MeM(pzᴹᵉ²)₃MMe]–, in which the two metal centers are bridged by three exo-bidentate pyrazolyl ligands. The bridging of two identical metal centers by more than two pyrazolyl groups is a rare structural motif, and so [MeM(pzᴹᵉ²)₃MMe]– represent important contributions to not only the chemistry of magnesium and zinc, but also to that of the pyrazolyl ligand. The reactivity of [MeZn(pzᴹᵉ²2)₃ZnMe]– towards protic reagents and trimethyltin halides has been investigated, and has most notably afforded a rare example of an anionic terminal zinc fluoride complex, [FZn(pzᴹᵉ²)₃ZnF]–. Additionally, the homodinuclear zinc hydride complex, [HZn(pzᴹᵉ²)₃ZnH]–, has been obtained and structurally characterized, and represents the first example of an anionic terminal zinc hydride compound. The spectroscopic characterization of both [HZn(pzMe2)₃ZnH]– and its isotopologue, [DZn(pzᴹᵉ²)₃ZnD]–, are summarized, as are the results of preliminary reactivity studies with CO2 and CS2, which suggest that insertion of these heterocumulenes into the Zn–H bonds is facile and affords, inter alia, zinc formate and zinc dithioformate species, respectively.

Chapter 4 summarizes the exocyclic N-methylation of Nitron(S), a 1,2,4-triazole thione derived from Nitron. The molecular structures of both Nitron(S) and of the methylated derivative, Nitron(S)Me, are reported, and a comparison of metrical data indicates that (i) the structures of these thiones differ significantly from the dominant tautomer of Nitron and (ii) the structures of these thiones compare favorably with the NHC tautomer of Nitron. Analyses of these compounds using natural bond orbital (NBO) and natural resonance theory (NRT) methods are in accord with the experimental structures.

Identiferoai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/d8-z6q1-2b61
Date January 2020
CreatorsSambade, David
Source SetsColumbia University
LanguageEnglish
Detected LanguageEnglish
TypeTheses

Page generated in 0.0088 seconds