This study investigates the coordination modes of potential multidentate N,O-donor Schiff base ligands to the [ReVO]3+ and fac-[ReI(CO)3]+ cores. The project is aimed at the synthesis of tridentate, tetradentate and pentadentate Schiff bases ligands derived from the condensation reactions of benzaldehyde with different primary amines. The structures of these Schiff bases and their complexes were confirmed by using physical characterization methods, namely melting points, UV-Visible, UV-emission, 1H NMR and IR spectroscopy, X-ray diffractometry and elemental analysis. To further understand the coordination chemistry of rhenium, the prepared diiminediphenol N2O2-donor Schiff base ligand N N′-o-phenylene-bis(salicylaldimine) (H2salphen) was reacted with trans-[ReOCl3(PPh3)2] to yield cis-[ReCl2(ophsal)(PPh3)], whereas its reaction with trans-[ReOBr3(PPh3)2] resulted in the formation of the cis-[ReBr2(aphsal)(PPh3)].2CH3CN complex. In the above complexes the H2salphen ligand was cleaved leading to the coordinated tridentate ophsal NO2- and aphsal N2O-donor ligands. The reaction of H3aphsal with trans-[ReOBr3(PPh3)2] in toluene led to an unexpected compound, trans- [{[ReBr(aphsal)(PPh3)2]Br}{[ReBr(aphsal)(PPh3)2](ReO4)}] with an imido [ReNR]3+core. The ligand aphsal was coordinated tridentately with the doubly deprotonated amino nitrogen leading to Re(V)-imido complexes. The reaction of 2-((Z)-(2-aminoethylimino)methyl)phenol (H3amphol) with [Re(CO)5Cl] led to the rhenium(I) product fac-[Re(CO)3(H3amphol)] with H3amphol coordinated as a monoanionic tridentate chelate through its phenolate oxygen and amino nitrogen atoms. The X-ray crystal structures showed that all complexes display a distorted octahedral geometry around the central rhenium atom. The reaction of 2,6-bis(2-hydroxyphenylimino)pyridine (H2hpp) with cis-[ReO2I(PPh3)2] resulted in the reduced Re(III) product trans-[Re(hpp)(PPh3)2]I, while trans-[Re(hpp)(PPh3)2](ReO4) was isolated from its reaction with trans-[ReOCl3(PPh3)2]. The H2hpp ligand acts as a pentadentate N3O2-donor ligand where the two phenolic protons undergo deprotonation and its three nitrogens act as neutral donor atoms. Both compounds resulted from a disproportionation reaction characterized by the produced perrhenate counter-ion. The complex fac-[Re(CO)3(H2hpp)Cl] was prepared from [Re(CO)5Cl] and H2hpp in toluene. The H2hpp ligand acted as a neutral bidentate N,N-donor chelate. The metal is coordinated to three carbonyl donors in a facial orientation, two neutral nitrogen atoms and a chloride ligand. The reactions of the potentially tetradentate ligand N,N'-ethylenebis(salicylideneimine) (H2salen) with different rhenium(V) precursors resulted in the formation of two dimeric oxorhenium (V) compounds. In the reaction of H2salen with trans-[ReOCl3(PPh3)2] in ethanol, the highly unusual distorted dimeric complex (μ-salen)[ReOCl2(PPh3)]2 was isolated, in which salen2- is coordinated as a tetradentate to two oxorhenium(V) centres, and salen2- is present as a bidentate monoanionic ligand on each rhenium center. The reaction of cis- [ReO2I(PPh3)2] with H2salen led to the formation of the neutral dimeric oxorhenium(V) complex (μ-O)[ReO(salen)]2 in which the tetradentate chelate salen acts as a tetradentate dianionic ligand through its phenolate oxygens and nitrogen atoms of the azomethine groups. In its reaction with H2hmp the compound (μ-O)[ReO(hmp)]2 was isolated. In this product the pentadentate ligand H2hmp coordinated as tetradentate via its phenolic oxygen and nitrogen atoms. The reaction of the potentially tetradentate N1,N2-bis(aminobenzylidene)-1,2-ethylenediamine (H2amben) with trans-[ReOCl3(PPh3)2] led to the formation of the monocationic square-pyramidal complex salt [ReO(amben)](ReO4.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:10441 |
Date | January 2013 |
Creators | Habarurema, Gratien |
Publisher | Nelson Mandela Metropolitan University, Faculty of Science |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis, Masters, MSc |
Format | vi, ii, 142 leaves : ill, pdf |
Rights | Nelson Mandela Metropolitan University |
Page generated in 0.0196 seconds