Return to search

The effect of photobiomodulation on cerebral blood flow

Photobiomodulation (PBM) therapy involves the irradiation of tissues with red to near- infrared (NIR) light at low power densities to stimulate healing, reduce inflammation, and promote optimal cellular functioning. These beneficial effects are thought to occur due to the absorption of NIR light by the chromophore, and terminal enzyme in the mitochondrial electron transport chain, cytochrome c oxidase (CCO). It is hypothesized that increased oxygen consumption due to the photostimulation of CCO, as well as photodissociation of the vasodilator nitric oxide from its binding site in the binuclear center of CCO, contribute to improved tissue healing by increasing blood flow to the irradiated region. Applied to the brain, PBM therapy has the potential to improve many neurological injuries and diseases for which reduced cerebral blood flow (CBF) is a common finding. This study examines whether cortical irradiation with NIR light has an impact on CBF in mice. Mice were administered brain PBM via 810nm, 190mW LED for 18 minutes. CBF was measured before, during, and after treatment using Doppler Optical Coherence Tomography. Results from 16 trials demonstrated a significant, 40% increase in CBF during NIR treatment. This CBF increase was not observed during control trials. Additionally, irradiation with a 730nm LED did not increase CBF, indicating that the blood flow increase observed with 810nm irradiation was not simply due to tissue heating. These findings provide support for the value of PBM therapy for the treatment of neurological conditions. / 2023-05-14T00:00:00Z

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/42587
Date15 May 2021
CreatorsIennaco, Maria
ContributorsBoas, David A.
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0053 seconds