This dissertation is concerned with design, fabrication, and mathematical modeling of three different microactuators driven by light. Compared to electricity, electromagnetic wave is a wireless source of power. A distant light source can be delivered, absorbed, and converted to generate a driving force for a microactuator. The study of light-driven microsystems, still at its early stage, is already expanding the horizon for the research of microsystems. The microactuators of this dissertation include micro-cantilevers driven by pulsed laser, photo-deformable microshells coated with gold nanospheres, and a nano-particles coated micro-turbine driven by visible light. Experimental investigation and theoretical analysis of these microactuators showed interesting results. These microactuators were functioned based on cross-linked, multiple physics phenomenon, such as photo-heating, thermal expansion, photo-chemistry effect, plasomonics enhancement, and thermal convection in rarefied gas. These multiple physics effects dominate the function of a mechanical system, when the system size becomes small. The modeling results of the microactuators suggest that, to simulate a microscale mechanical system accurately, one has to take account the minimum dimension of the system and to consider the validity of a theoretical model. Examples of the building of different microstructures were shown to demonstrate the capacity of a digital-micromirror-device (DMD) based apparatus for three-dimensional, heterogeneous fabrication of polymeric microstructures. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/9697 |
Date | 24 January 2011 |
Creators | Han, Li-Hsin |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Format | electronic |
Rights | Copyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works. |
Page generated in 0.0024 seconds