Return to search

Dual-View Inverted Selective Plane Illumination Microscopy (diSPIM) Imaging for Accurate 3D Digital Pathology

archives@tulane.edu / For decades, histopathology and cytology have provided the reference standard for cancer diagnosis, prognosis prediction and treatment decisions. However, they are limited to 2D slices, which are created via cutting and/or smearing, thus not faithfully representing the true 3D structures of the cellular or tissue material. Multiple imaging methods have been utilized for non-destructive histologic imaging of tissues, but are usually limited by varying combinations of low resolution, low penetration depth, or a relatively slow imaging speed, and all suffer from anisotropic resolution, which could distort 3D tissue architectural renderings and thus hinder new work to analyze and quantify 3D tissue microarchitecture. Therefore, there is a clear need for a non-destructive imaging tool that can accurately represent the 3D structures of the tissue or cellular architecture, with comparable qualities and features as traditional histopathology.
In this work, dual-view inverted selective plane illumination microscopy (diSPIM) has been customized and optimized for fast, 3D imaging of large biospecimens. Imaging contrast of highly scattering samples has been further improved by adding confocal detection and/or structured illumination (SI) as additional optional imaging modes. A pipeline of dual-view imaging and processing has also been developed to achieve more isotropic 3D resolution, specifically on DRAQ5 and eosin (D&E) stained large (millimeter to centimeter size) biopsies.
To determine the impact of 3D, high-resolution imaging on clinical diagnostic endpoints, multiple prostate cancer (PCa) biopsies have been collected, imaged with diSPIM, and evaluated by pathologists. It has been found that the pathologist is “equally” confident on the PCa diagnosis from viewing 3D volumes and 2D slices, and the diagnostic agreement between 3D volumes is significantly higher than 2D slices.
The high-resolution and large-volume coverage of diSPIM may also help verify results from other lower-resolution modalities by serving as a 3D histology surrogate. Tissue correlations have been found between images acquired by diSPIM and photo-acoustic imaging, or by diSPIM and biodynamic imaging, proving diSPIM as a useful tool to aid in validation of lower-resolution imaging tools. The potential of diSPIM imaging has also been demonstrated in other applications, such as in the study of in-vitro neural models. / 1 / Bihe Hu

  1. tulane:120415
Identiferoai:union.ndltd.org:TULANE/oai:http://digitallibrary.tulane.edu/:tulane_120415
Date January 2020
ContributorsHu, Bihe (author), Brown, Jonathon Quincy (Thesis advisor), School of Science & Engineering Biomedical Engineering (Degree granting institution)
PublisherTulane University
Source SetsTulane University
LanguageEnglish
Detected LanguageEnglish
TypeText
Formatelectronic, pages:  182
RightsNo embargo, Copyright is in accordance with U.S. Copyright law.

Page generated in 0.0016 seconds