Street lighting is an important aspect of infrastructure in terms of both safety and comfort, but it also consumes a lot of energy. Unused light is a waste of energy, and without any form of control of the street lighting, this problem will continue to increase along with the expansion of road networks. The aim of this thesis is to propose an intelligent control system for street lighting that can adapt to the velocity of individual road users, to investigate if this could provide ways to improve the efficiency of street lighting. Previous control approaches include systems based on ambient light intensity or presence of road users, but no studies were found in which illumination adapts to the velocity of road users. The project involves three main steps, including a literature review, a system implementation and evaluation. In the proposed system, street lights cooperate to detect road users and calculate their velocities in order to adapt the illumination and make it follow their movement. It can be concluded from the evaluation results that the velocity readings help further optimize the illumination control in comparison to systems that do not consider velocity. The velocity readings make it possible to only illuminate the roadway in the direction of travel, while also adapting the distance of illumination to the recorded speed. The proposed control scheme is considered a viable solution for reducing the amount of unused light, consequently reducing the energy consumption of street lighting.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:miun-28731 |
Date | January 2016 |
Creators | Andersson, Karl |
Publisher | Mittuniversitetet, Avdelningen för elektronikkonstruktion |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0142 seconds