Return to search

Molecular genetic manipulations in the white-rot fungus Trametes versicolor

Although several enzymes presumed to be part of the delignification/kraft pulp biobleaching system of the white-rot basidiomycete Trametes versicolor have been studied, characterized, and even exploited as pulp treatments, the complete system remains poorly understood. Little is known about which enzymes are essential for delignification, how they are regulated, or whether there remain unknown enzymes essential to wood decay in this system. Auxotrophic mutants of T. versicolor 52J were developed and characterized. Plasmid pUC18 was complemented with the T. versicolor 52J genome to create a gene library. Transformation with this plasmid-gene library converted argB and ade2 auxotrophs of T. versicolor 52J to prototrophy. Attempts to rescue the plasmids responsible were unsuccessful. Several different pre-existing plasmid constructs were examined for their potential as selectable markers on the fungus. One of these, pGPhT, worked well at conferring phleomycin resistance. Given that there are now available partial or complete sequences for four T. versicolor laccases, the single cellobiose dehydrogenase, and a lignin peroxidase isozyme, these genetic tools should be very useful in dissecting the mechanisms of white-rot delignification.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.33393
Date January 2000
CreatorsDosSantos, Gary P.
ContributorsArchibald, Fred (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Natural Resource Sciences.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001781981, proquestno: MQ70703, Theses scanned by UMI/ProQuest.

Page generated in 0.0019 seconds