Return to search

Gaussian fluctuations in some determinantal processes

This thesis consists of two parts, Papers A and B, in which some stochastic processes, originating from random matrix theory (RMT), are studied. In the first paper we study the fluctuations of the kth largest eigenvalue, xk, of the Gaussian unitary ensemble (GUE). That is, let N be the dimension of the matrix and k depend on N in such a way that k and N-k both tend to infinity as N - ∞. The main result is that xk, when appropriately rescaled, converges in distribution to a Gaussian random variable as N → ∞. Furthermore, if k1 < ...< km are such that k1, ki+1 - ki and N - km, i =1, ... ,m - 1, tend to infinity as N → ∞ it is shown that (xk1 , ... , xkm) is multivariate Gaussian in the rescaled N → ∞ limit. In the second paper we study the Airy process, A(t), and prove that it fluctuates like a Brownian motion on a local scale. We also prove that the Discrete polynuclear growth process (PNG) fluctuates like a Brownian motion in a scaling limit smaller than the one where one gets the Airy process. / QC 20100716

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-4343
Date January 2007
CreatorsHägg, Jonas
PublisherKTH, Matematik (Inst.), Stockholm : KTH
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-MAT, 1401-2286 ; 07-MA-02

Page generated in 0.0054 seconds