Linear optimization tools are used to solve many problems that arise in our day-to-day lives. The linear optimization models and methodologies help to find, for example, the best amount of ingredients in our food, the most suitable routes and timetables for the buses and trains we take, and the right way to invest our savings. We would cite many other situations that involves linear optimization, since a large number of companies around the world base their decisions in solutions which are provided by the linear optimization methodologies. In this thesis, we propose theoretical and computational developments to improve the performance of important linear optimization methods. Namely, we address simplex type methods, interior point methods, the column generation technique and the branch-and-price method. In simplex-type methods, we investigate a variant which exploits special features of problems which are formulated in the general form. We present a novel theoretical description of the method and propose how to efficiently implement this method in practice. Furthermore, we propose how to use the primal-dual interior point method to improve the column generation technique. This results in the primal-dual column generation method, which is more stable in practice and has a better overall performance in relation to other column generation strategies. The primal-dual interior point method also oers advantageous features which can be exploited in the context of the branch-and-price method. We show that these features improves the branching operation and the generation of columns and valid inequalities. For all the strategies which are proposed in this thesis, we present the results of computational experiments which involves publicly available, well-known instances from the literature. The results indicate that these strategies help to improve the performance of the linear optimization methodologies. In particular for a class of problems, namely the vehicle routing problem with time windows, the interior point branch-and-price method proposed in this study was up to 33 times faster than a state-of-the-art implementation available in the literature / Ferramentas de otimização linear são usadas para resolver diversos problemas do nosso dia-a- dia. Os modelos e as metodologias de otimização linear ajudam a obter, por exemplo, a melhor quantidade de ingredientes na nossa alimentação, os horários e as rotas de ônibus e trens que tomamos, e a maneira certa para investir nossas economias. Muitas outras situações que envolvem otimização linear poderiam ser aqui citadas, já que um grande número de empresas em todo o mundo baseia suas decisões em soluções obtidas pelos métodos de otimização linear. Nesta tese, são propostos desenvolvimentos teóricos e computacionais para melhorar o desempenho de métodos de otimização linear. Em particular, serão abordados métodos tipo simplex, métodos de pontos interiores, a técnica de geração de colunas e o método branch-and-price. Em métodos tipo simplex, é investigada uma variante que explora as características especiais de problemas formulados na forma geral. Uma nova descrição teórica do método é apresentada e, também, são propostas técnicas computacionais para a implementação eciente do método. Além disso, propõe-se como utilizar o método primal-dual de pontos interiores para melhorar a técnica de geração de colunas. Isto resulta no método primal-dual de geração de colunas, que é mais estável na prática e tem melhor desempenho geral em relação a outras estratégias de geração de colunas. O método primal-dual de pontos interiores também oferece características vantajosas que podem ser exploradas em conjunto com o método branch-and-price. De acordo com a investigação realizada, estas características melhoram a operação de ramificação e a geração de colunas e de desigualdades válidas. Para todas as estratégias propostas neste trabalho, são apresentados os resultados de experimentos computacionais envolvendo problemas de teste bem conhecidos e disponíveis publicamente. Os resultados indicam que as estratégias propostas ajudam a melhorar o desempenho das metodologias de otimização linear. Em particular para uma classe de problemas, o problema de roteamento de veículos com janelas de tempo, o método branch-and-price de pontos interiores proposto neste estudo foi até 33 vezes mais rápido que uma implementação estado-da-arte disponível na literatura
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-16042013-101426 |
Date | 31 January 2013 |
Creators | Pedro Augusto Munari Junior |
Contributors | Marcos Nereu Arenales, Jacek Gondzio, Marcus Vinicius Soledade Poggi de Aragão, José Manuel Vasconcelos Valério de Carvalho, Aurelio Ribeiro Leite de Oliveira, Maristela Oliveira dos Santos |
Publisher | Universidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds