Small aerial vehicles such as quad-rotors have been widely used commercially, for research and for hobby for the last decade with use still growing. The high interest is mainly due to the vehicles being small, simple, cheap and versatile. Among rigid body dynamics fast dynamics exist cohering to motors and other fast actuators. A linear quadratic control design technique is here investigated. The design technique suggests that the linear quadratic controller can be designed with penalties on the slow states only. The fast dynamics are modeled but the states are not penalised in the linear quadratic design. The design technique is here applied and evaluated. The results show that this in several cases is a suitable design technique for linear quadratic control design. MATLAB and Simulink have been widely used for design and implementation of control systems. With additional toolboxes these control systems can be compiled to and run on remote computers. Small, lightweight computers with high computational capacity are now easily accessible. In this thesis an avionics solution based on a small, powerful computer is presented. Simulink models can be compiled and transferred to the computer from the Simulink environment. The result is a user friendly way of rapid prototyping and evaluation of control systems.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-119622 |
Date | January 2015 |
Creators | Blomberg, Magnus |
Publisher | Linköpings universitet, Reglerteknik, Linköpings universitet, Tekniska fakulteten |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds