Return to search

A SIMULATED COMPARISON OF LINEAR AND RANS BASED CFD MODELING IN REGARD TO CRITICAL SLOPE

The aim of this study is to compare the performance of a linear model to a nonlinear model focusing on flow separation based on a critical slope value. Specifically, the WindPRO WAsP model will be compared with the WindSIM CFD model over a simulated terrain to determine the point the two models differ in relation to the inclination of the terrain. The results of this study will verify if the proposed critical slope value of roughly 17 degrees is truly representative of the limitation of the WAsP model in producing accurate results as compared to a CFD model.  Multiple similar studies have been performed using existing sites with actual met mast data as a comparison to the model outputs. Many of these cases have come up with varying results due primarily to the large number of uncontrolled factors influencing the data. This study will be designed in a fully simulated environment where all variables can be controlled, allowing for the manipulation of a single variable to understand its’ specific influence over the model. The primary variable being tested in this study will be the slope of the terrain with all other factors held constant.   Based on the outcome of 7 alternative runs with ridge heights of 100, 120, 140, 160, 180, 200, and 300 meters and respective maximum slope values of 10.31, 12.32, 14.29, 16.23, 18.14, 20, and 28.63 degrees a defined separation point at a hub height of 94 meters could not be found. Each run demonstrated correlation between wind speeds and terrain slope variations but a considerable difference in estimated wind resources was present between the linear and non-linear CFD models where any slope in terrain is present. This, as expected, increases where terrain inclination increases, but a clearly defined difference between the two models is not evident at the previously established critical slope value of approximately 17 degrees (30%).

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-368400
Date January 2018
CreatorsRobinson, Jeffrey
PublisherUppsala universitet, Institutionen för geovetenskaper
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds