Return to search

Attenuation of Harmonic Distortion in Loudspeakers Using Non-linear Control / Olinjär reglering för dämpning av harmonisk distorsion i högtalare

The first loudspeaker was invented almost 150 years ago and even though much has changed regarding the manufacturing, the main idea is still the same. To produce clean sound, modern loudspeaker consist of expensive materials that often need advanced manufacturing equipment. The relatively newly established company Actiwave AB uses digital signal processing to enhance the audio for loudspeakers with poor acoustic properties. Their algorithms concentrate on attenuating the linear distortion but there is no compensation for the loudspeakers' non-linear distortion, such as harmonic distortion. To attenuate the harmonic distortion, this thesis presents controllers based on exact input-output linearisation. This type of controller needs an accurate model of the system. A loudspeaker model has been derived based on the LR-2 model, an extension of the more common Thiele-Small model. A controller based on exact input-output linearisation also needs full state feedback, but since feedback risk being expensive, state estimators were used. The state estimators were based on feed-forward or observers using the extended Kalman filter or the unscented Kalman filter. A combination of feed-forward state estimation and a PID controller were designed as well. In simulations, the total harmonic distortion was attenuated for all controllers up to 180 Hz. The simulations also showed that the controllers are sensitive to inaccurate parameter values in the loudspeaker model. During real-life experiments, the controllers needed to be extended with a model of the used amplifier to function properly. The controllers that were able to attenuate the harmonic distortion were the two methods using feed-forward state estimation. Both controllers showed improvement compared to the uncontrolled case for frequencies up to 40 Hz.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-78645
Date January 2012
CreatorsArvidsson, Marcus, Karlsson, Daniel
PublisherLinköpings universitet, Reglerteknik, Linköpings universitet, Tekniska högskolan, Linköpings universitet, Reglerteknik, Linköpings universitet, Tekniska högskolan
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds