Submitted by Eliane Martins de Aguiar (elianemart@gmail.com) on 2016-08-01T21:03:09Z
No. of bitstreams: 1
dissertacao-ElianeMartins.pdf: 6062037 bytes, checksum: 14567c2feca25a81d6942be3b8bc8a65 (MD5) / Approved for entry into archive by Janete de Oliveira Feitosa (janete.feitosa@fgv.br) on 2016-08-03T20:29:34Z (GMT) No. of bitstreams: 1
dissertacao-ElianeMartins.pdf: 6062037 bytes, checksum: 14567c2feca25a81d6942be3b8bc8a65 (MD5) / Approved for entry into archive by Maria Almeida (maria.socorro@fgv.br) on 2016-08-23T20:12:35Z (GMT) No. of bitstreams: 1
dissertacao-ElianeMartins.pdf: 6062037 bytes, checksum: 14567c2feca25a81d6942be3b8bc8a65 (MD5) / Made available in DSpace on 2016-08-23T20:12:54Z (GMT). No. of bitstreams: 1
dissertacao-ElianeMartins.pdf: 6062037 bytes, checksum: 14567c2feca25a81d6942be3b8bc8a65 (MD5)
Previous issue date: 2016-05-30 / O word2vec é um sistema baseado em redes neurais que processa textos e representa pa- lavras como vetores, utilizando uma representação distribuída. Uma propriedade notável são as relações semânticas encontradas nos modelos gerados. Este trabalho tem como objetivo treinar dois modelos utilizando o word2vec, um para o Português e outro para o Inglês, e utilizar o gradiente descendente estocástico para encontrar uma matriz de tradução entre esses dois espaços.
Identifer | oai:union.ndltd.org:IBICT/oai:bibliotecadigital.fgv.br:10438/16798 |
Date | 30 May 2016 |
Creators | Aguiar, Eliane Martins de |
Contributors | Mendes, Eduardo Fonseca, Café, Ligia Arruda, Escolas::EMAp, Souza, Renato Rocha, Coelho, Flávio Codeço |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional do FGV, instname:Fundação Getulio Vargas, instacron:FGV |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds