Return to search

Un cadre de développement sémantique pour la recherche sociale

Cette thèse présente un système permettant d'extraire les interactions partagées dans les réseaux sociaux et de construire un profil dynamique d'expertise pour chaque membre dudit réseau social. La difficulté principale dans cette partie est l'analyse de ces interactions, souvent très courtes et avec peu de structure grammaticale et linguistique. L'approche que nous avons mis en place propose de relier les termes importants de ces messages à des concepts dans une base de connaissance sémantique, type Linked Data. Cette connexion permet en effet d'enrichir le champ sémantique des messages en exploitant le voisinage sémantique du concept dans la base de connaissances. Notre première contribution dans ce contexte est un algorithme qui permet d'effectuer cette liaison avec une précision plus augmentée par rapport à l'état de l'art, en considérant le profil de l'utilisateur ainsi que les messages partagés dans la communauté dont il est membre comme source supplémentaire de contexte. La deuxième étape de l'analyse consiste à effectuer l'expansion sémantique du concept en exploitant les liens dans la base de connaissance. Notre algorithme utilise une heuristique basant sur le calcul de similarité entre les descriptions des concepts pour ne garder que ceux les plus pertinents par rapport au profil de l'utilisateur. Les deux algorithmes mentionnés précédemment permettent d'avoir un ensemble de concepts qui illustrent les centres d'expertise de l'utilisateur. Afin de mesurer le degré d'expertise de l'utilisateur qui s'applique sur chaque concept dans son profil, nous appliquons la méthode-standard vectoriel et associons à chaque concept une mesure composée de trois éléments : (i) le tf-idf, (ii) le sentiment moyen que l'utilisateur exprime par rapport au dit concept et (iii) l'entropie moyen des messages partagés contenant ledit concept. L'ensemble des trois mesures combinées permet d'avoir un poids unique associé à chaque concept du profil. Ce modèle de profil vectoriel permet de trouver les " top-k " profils les plus pertinents par rapport à une requête. Afin de propager ces poids sur les concepts dans l'expansion sémantique, nous avons appliqué un algorithme de type propagation sous contrainte (Constrained Spreading Activation), spécialement adapté à la structure d'un graphe sémantique. L'application réalisée pour prouver l'efficacité de notre approche, ainsi que d'illustrer la stratégie de recommandation est un système disponible en ligne, nommé " The Tagging Beak " (http://www.tbeak.com). Nous avons en effet développé une stratégie de recommandation type Q&A (question - réponse), où les utilisateurs peuvent poser des questions en langage naturel et le système recommande des personnes à contacter ou à qui se connecter pour être notifié de nouveaux messages pertinents par rapport au sujet de la question.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00708781
Date09 November 2011
CreatorsStan, Johann
PublisherUniversité Jean Monnet - Saint-Etienne
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.002 seconds