Estudamos a resolubilidade global de uma classe de sistemas involutivos com n campos vetoriais suaves definidos no toro de dimensão n + 1. Obtemos uma caracterização completa para o caso desacoplado desta classe em termos de formas de Liouville e da conexidade de todos os subníveis e superníveis, no espaço de recobrimento minimal, de uma primitiva global da 1-forma associada ao sistema. Além disso, apresentamos uma situação especial na qual o sistema não é globalmente resolúvel e usamos isso para obter alguns resultados em um caso com acoplamento mais forte / We study the global solvability of a class of involutive systems with n smooth vector fields on the torus of dimension n + 1. We obtain a complete characterization for the uncoupled case of this class in terms of Liouville forms and of the connectedness of all sublevel and superlevel sets of the primitive of a certain 1-form in the minimal covering space. Also, we exhibit a special situation where the system is not globally solvable and we use this to obtain some results in a more general case
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-15062012-162546 |
Date | 30 March 2012 |
Creators | Medeira, Cléber de |
Contributors | Bergamasco, Adalberto Panobianco, Zani, Sergio Luis |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0018 seconds