Return to search

Bäcklund transformations for minimal surfaces

In this thesis, we study a Bäcklund transformation for minimal surfaces - surfaces with vanishing mean curvature - transforming a given minimal surface into a possible infinity of new ones. The transformation, also carrying with it mappings between solutions to the elliptic Liouville equation, is first derived by using geometrical concepts, and then by using algebraic methods alone - the latter we have not been able to find elsewhere. We end by exploiting the transformation in an example, transforming the catenoid into a family of new minimal surfaces.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-119914
Date January 2015
CreatorsBäck, Per
PublisherLinköpings universitet, Matematik och tillämpad matematik, Linköpings universitet, Tekniska fakulteten
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0013 seconds