Return to search

Role of glucose and glutamine in lipogenesis in the VM-M3 glioblastoma cell line and the inheritance of brain cardiolipin fatty acid abnormality in the VM/Dk mice

Thesis advisor: Thomas Seyfried / Lipids, in all their forms from structural components of the membranes (phosphoglycerides, glycolglycerolipids) to signaling molecules (IP3, DAG, prostaglandins, etc.,) post-translational modification of proteins (palmitoylated, farnesylated, prenylated, and GPI anchoring) play an essential role in cancer cell survival, proliferation, and metastasis. Alteration in structural lipids can impair transport, and signaling cascades. Abnormalities in lipids, such as cardiolipin (Ptd2Gro), impair mitochondrial function, bioenergetics, and could play a role in precipitatting the high incidence of spontaneous tumors in VM/Dk mice. This thesis explores the role of glucose and glutamine in their incorporation into lipids in the VM-M3 murine glioblastoma cell line as well as the inheritance of brain cardiolipin fatty acids abnormalities in VM/Dk mice. I used labeled [14C]-U-D-glucose and [14C]-U-L-glutamine to examine the profile of de novo lipid biosynthesis in the VM-M3 cell line. The major lipids synthesized included phosphatidylcholine (PtdCho), phosphatidylethanolamine (EtnGpl), phosphatidylinositol (PtdIns), phosphatidylserine (PtdSer), sphingomyelin (CerPCho), bis(monoacylglycero)phosphate (BMP) / phosphatidic acid (PtdOH), cholesterol (C), Ptd2Gro, and the gangliosides. The data show that the incorporation of labeled glucose and glutamine into synthesized lipids was dependent on the type of growth environment, and that the VM-M3 glioblastoma cells could acquire lipids, especially cholesterol, from the external environment for growth and proliferation. In addition, this thesis also explores and evaluates the abnormality of Ptd2Gro fatty acid composition in VM mice in comparison to B6 mice. Although previously reported, I confirmed the finding in the abnormal cardiolipin fatty acid composition in the VM mice. The abnormal brain cardiolipin fatty acid composition was found to be inherited as an autosomal dominant trait in reciprocal B6 x VM F1 hybrids for both male and female. Impaired cognitive awareness under hypoxia observed for the VM mice and reciprocal F1 hybrids is associated with abnormalities in neural lipid composition. / Thesis (PhD) — Boston College, 2014. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Biology.

Identiferoai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_103739
Date January 2014
CreatorsTa, Nathan
PublisherBoston College
Source SetsBoston College
LanguageEnglish
Detected LanguageEnglish
TypeText, thesis
Formatelectronic, application/pdf
RightsCopyright is held by the author, with all rights reserved, unless otherwise noted.

Page generated in 0.0017 seconds